Skip to main content
Log in

Role of ligands in accumulation and fractionation of rare earth elements in plants

Examples of phosphate and citrate

  • Original Articles
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Few studies have been carried out on the effects of ligands on rare earth element (REE) bioaccumulation processes. In this study, the effects of phosphate (Pi, an inorganic ligand) and citrate (an organic ligand) on accumulation and fractionation of REEs in wheat were investigated using aqueous culture with extranous mixed REEs (MRE). The results show that initial Pi solution culture at various levels followed by exposure to a fixed-MRE solution did not significantly change the total concentrations of REEs (ΣREE) in roots, whereas the ΣREE in leaves dramatically decreased with increasing levels of Pi applied. Simultaneous culture of wheat with mixture of MRE and citrate solutions caused obvious decreases of the ΣREE in both roots and leaves. Compared with MRE, significant fractionations of REEs were found in wheat organs when no ligand was applied. Notable middle REE (MREE) enrichment and M-type tetrad effect were observed in the roots, and heavy REE (HREE) enrichment and W-type tetrad effect existed in the leaves. Pi treatments did not significantly affect the fractionations of REEs in the roots, but enrichment of HREEs in the leaves slightly increased at the highest level of Pi applied. Fractionations of REEs in both roots and leaves decreased with increasing levels of citrate applied; at higher levels of citrate (≥150 μM), no above fractionation features were observed in wheat, but light REE (LREE) enrichment existed in the roots and leaves. The results indicate that ligands might play important roles in accumulation and fractionation of REEs during bioaccumulation processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Montaser, Inductively Coupled Plasma Mass Spectrometry, Wiley-VCH, New York (1998).

    Google Scholar 

  2. S. A. Wood, The aqueous geochemistry of the rare-earth elements and yttrium, I. Review of available low-temperature data for inorganic complexes and the inorganic REE speciation of natural waters, Chem. Geol. 82, 159–186 (1990).

    Article  CAS  Google Scholar 

  3. S. A. Wood, The aqueous geochemistry of the rare-earth elements and yttrium: critical stability constants for complexes with simple carboxylic acids at 25°C and 1 bar and their application to nuclear waste management, Eng. Geol. 34, 229–259 (1990).

    Article  Google Scholar 

  4. F. J. Millero, Stability constants for the formation of rare earth inorganic complexes as a function of ionic strength, Geochim. Cosmochim. Acta 56, 3123–3132 (1998).

    Article  Google Scholar 

  5. J. H. Lee and R. H. Byrne, Examination of comparative rare earth element complexation behavior using linear free-energy relationships, Geochim. Cosmochim. Acta 56, 1127–1137 (1992).

    Article  CAS  Google Scholar 

  6. R. H. Byrne and B. Q. Li, Comparative complexation behaviour of the rare earth, Geochim. Cosmochim. Acta 59(22), 4575–4589 (1995).

    Article  CAS  Google Scholar 

  7. F. F. Fu, T. Akage, and K. Shinotsuka. Distribution patterns of rare earth elements in fern: implication for intake of fresh silicate particles by plants, Biol. Trace Element Res. 64, 13–26 (1998).

    CAS  Google Scholar 

  8. A. Wyttenbach, P. Schleppi, J. Bucher, V. Furrer, and L. Tobler, The accumulation of the rare earth elements and of scandium in successive needle age classes of Norway spruce, Biol. Trace Element Res. 41, 13–29 (1994).

    Article  CAS  Google Scholar 

  9. M. Bernd and D. L. Zhang, Natural background concentrations of rare-earth elements in a forest ecosystem, Sci. Total Environ. 103(1), 27–35 (1991).

    Article  Google Scholar 

  10. N. Miekeley, E. A. Casartelli, and R. M. Dotto, Concentration levels of rare-earth elements and thorium in plants from the Morro Do Ferro environment as an indicator for the biological availability of transuranium elements. J. Radioanal. Nucl. Chem. 182, 75–89 (1994).

    Article  CAS  Google Scholar 

  11. A. Wyttenbach, V. Furrer, P. Schleppi, and L. Tobler, Rare earth elements in soil and in soil-grown plants, Plant Soil 199, 267–273 (1998).

    Article  CAS  Google Scholar 

  12. F. F. Fu, A. Tasuku, Y. Sadayo, and I. Masaya, The variation of REE (rare earth elements) patterns in soil-grown plants: a new proxy for the source of rare earth elements and silicon plants, Plant Soil 235, 53–64 (2001).

    Article  CAS  Google Scholar 

  13. P. Henderson, About rare earth elements, in Rare Earth Element Geochemistry, P. Henderson, ed., Elsevier, New York, pp. 1–50 (1984).

    Google Scholar 

  14. S. R. Tarlor and S. M. McLennan, The significance of the rare earths in geochemistry and cosmochemistry, in Handbook on the Physics and Chemistry of Rare Earths, K. A. Gschneider and L. Eyring, eds., Elsevier, New York, pp. 435–479 (1988).

    Google Scholar 

  15. D. G. Brookins, Aqueous geochemistry of rare earth elements, in Geochemistry and Mineralogy of Rare Earth Elements, Reviews in Mineralogy, Vol. 21, B. R. Lipin and G. A. Mckay, ed., Mineralogical Society of America, Washington, DC, pp. 201–225 (1989).

    Google Scholar 

  16. Z. G. Wei, M. Yin, and X. Zhang, Rare earth elements in naturally grown fern Dicranopteris linearis in relation to their variation in South-Jiangxi region, Environ. Pollut. 114, 345–355 (2001).

    Article  PubMed  CAS  Google Scholar 

  17. S. M. Ding, T. Liang, L. J. Wang, and Q. Sun, Characteristics of translocation and fractionation of rare earth elements in soil-wheat system, J. Agro-environ. Sci. 22(5), 519–523 (2003).

    CAS  Google Scholar 

  18. X. K. Xu, W. Z. Zhu, and Z. J. Wang, Distributions of rare earths and heavy metals in field-grown maize after application of rare earth-containing microfertilizer, Sci. Total Environ. 293, 97–105 (2002).

    Article  PubMed  CAS  Google Scholar 

  19. F. F. Fu and A. Tasuku, Distribution of rare earth elements in seaweed: implication of two different soruces of rare earth elements and silicon in seaweed. J. Phycol. 36, 62–70 (2000).

    Article  CAS  Google Scholar 

  20. A. Masuda, Q. Kawakami, Y. Dohmoto, and T. Takenaka, Lanthanide tetrad effects in nature: two mutually opposite types W and M, Geochem. J. 21, 119–124 (1987).

    CAS  Google Scholar 

  21. S. M. Mclennan, Rare earth element geochemistry and the “tetrad” effect, Geochim. Cosmochim. Acta 58(9), 2025–2033 (1994).

    Article  CAS  Google Scholar 

  22. W. Irber, The lanthanide tetrad effect and its correlation with K/Rb Eu/Eu*, Y/Ho and Zr/Hf of evolving peraluminous granite suites, Geochim. Cosmochim. Acta 63, 489–508 (1999).

    Article  CAS  Google Scholar 

  23. T. Monecke, U. Kempe, J. Monecke, M. Sala, and D. Wolf, Tetrad effect in rare earth element distribution patterns: a method of quantification with application to rock and mineral samples from granite-related metal deposits, Geochim. Cosmochim. Acta 66(70), 1185–1196 (2002).

    Article  CAS  Google Scholar 

  24. R. H. Byrne, X. Liu, and J. Schijf, The influence of phosphate coprecipitation of rare earth distributions in natural waters, Geochim. Cosmochim. Acta 60(17), 3341–3346 (1996).

    Article  CAS  Google Scholar 

  25. R. M. Welch and W. A. Norvell, Mechanisms of cadmium uptake, translocation and deposition in plants, in Cadmium in Soils and Plants, Volume 85, M. J. McLaughlin and B. R. Singh, eds., Kluwer Academic, Dordrecht, The Netherlands, pp. 125–150 (1999).

    Google Scholar 

  26. Y. X. Chen, Q. Lin, Y. M. Luo, et al. The role of citric acid on the phytoremediation of heavy metal contaminated soil, Chemosphere 50, 807–811 (2003).

    Article  PubMed  CAS  Google Scholar 

  27. Q. Lin, Chemical behavior of Cd and Pb in rhizosphere and its uptake by plants. PhD thesis, Institute of Soil Science, Chinese Academy of Science (1996).

  28. A. E. Mailer, D. Rosalyn, R. D. Matthews, J. A. McDowell, R. R. Walden, and B. A. Ahner, Environmental cadmium levels increase phytochelation and glutathione in letture grown in a chelator-buffered nutrient solution, J. Environ. Qual. 32, 1356–1364 (2003).

    Article  Google Scholar 

  29. A. L. Epstein, C. D. Gussman, M. J. Blaylock, et al. EDTA and Pb-EDTA accumulation in Brassica juncea grown in Pb-amended soil, Plant Soil 208, 87–94 (1999).

    Article  CAS  Google Scholar 

  30. A. D. Vassil, Y. Kapulnik, I. Raskin, and D. E. Salt, The role of EDTA in lead transport and accumulation by Indian mustard, Plant Physiol. 117, 447–453 (1998)

    Article  CAS  PubMed  Google Scholar 

  31. S. A. Barber, Soil Nutrient Bioavailability: A Mechanistic Approach, Wiley, New York (1984).

    Google Scholar 

  32. G. X. Xing and J. G. Zhu, Chemistry of Trace Elements and Rare Earth Elements in Soil, Science Press, Beijing, (2003).

    Google Scholar 

  33. P. J. Hocking, The composition of phloem exudate and xylem sap from tree tobacco (Nicotiana glauca Groh), Ann. Bot. 45, 633–643 (1980).

    CAS  Google Scholar 

  34. H. Marschner, Mineral Nutrition of Higher Plants, Academic, Cambridge (1995).

    Google Scholar 

  35. D. L. Jones, Organic acids in the rhizosphere—a critical review, Plant Soil 205, 25–44 (1998).

    Article  CAS  Google Scholar 

  36. D. L. Jones, P. G. Dennis, and A. G. Owen, Organic acid behavior in soils—misconceptions and knowledge gaps, Plant Soil 248, 31–41 (2003)

    Article  CAS  Google Scholar 

  37. R. Baziramakenga, R. R. Simard, and G. D. Leroux, Determination of organic acids in soil extracts by ion chromatography, Soil Biol. Biochem. 27, 349–356 (1995).

    Article  CAS  Google Scholar 

  38. A. J. Krzyszowska, M. J. Blaylock, G. F. Vance, and M. B. David, Ion-chromatographic analysis of low molecular weight organic acids in spodoso forest floor solutions, Soil Sci. Soc. Am. J. 60, 1565–1571 (1996).

    Article  CAS  Google Scholar 

  39. B. W. Strobel, Influence of vegetation on low-molecular-weight carboxylic acids in soil solution—a review, Geoderma 99, 169–198 (2001).

    Article  CAS  Google Scholar 

  40. D. L. Jones and P. R. Darrah, Role of root derived organic acids in the mobilization of nutrients from the rhizosphere, Plant Soil 166, 247–257 (1994).

    Article  CAS  Google Scholar 

  41. X. Q. Shan, L. Jun, and W. Bei, Effect of organic acids on adsorption and desorption of rare earth elements, Chemosphere 47, 701–710 (2002).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ding, S., Liang, T., Zhang, C. et al. Role of ligands in accumulation and fractionation of rare earth elements in plants. Biol Trace Elem Res 107, 73–86 (2005). https://doi.org/10.1385/BTER:107:1:073

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/BTER:107:1:073

Index Entries

Navigation