Skip to main content
Log in

Copper modifies the activity of sodium-transporting systems in erythrocyte membrane in patients with essential hypertension

  • Original Articles
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The aim of the study was to verify the hypothesis if copper could influence the activity of sodium-transporting systems in erythrocyte membrane that could be related to essential hypertension. The examined group of patients consisted of 15 men with hypertension. The control group was 11 healthy male volunteers. The Na+/H+ exchanger (NHE) activity in erythrocytes was determined according to Orlov et al. The activity of transporting systems (ATP-Na+/K+; co-Na+/K+/Cl; ex-Na+/Li+; free Na+ and K+ outflow [Na+, K+-outflow]) was determined according to Garay's method. The concentration of copper in plasma was assessed using atomic absorption spectrometry. The activity of ATP-Na+/K+ (μmol/L red blood cells [RBCs]/h) in hypertensive patients was 2231.5±657.6 vs 1750.5±291 in the control (p<0.05), the activity of co-Na+/K+/Cl (μmol/L RBCs/h) in hypertensives was 171.3±77.9 vs 150.7±53.9 in the control (NS). Na+-outflow (μmol/L RBCs/h) in hypertensives was 118.3±51.6 vs 113.3±24.4 in the control (NS). The K+-outflow (μmol/L RBCs/h) in hypertensives was 1361.7±545.4 vs 1035.6±188.3 in the control (NS). The activity of ex-Na+/Li+ (μmol/L RBCs/h) in hypertensive patients was 266.1±76.1 vs 204.1±71.6 in the control (p<0.05). NHE activity (mmol/L RBCs/h) in hypertensives was 9.7±2.96 vs 7.7±1.33 in the control (p<0.05). In hypertensive patients, negative correlation was found between the activity of Na+/K+/Cl co-transport and plasma copper concentration (R s=−0.579, p <0.05) and between the activity of ex-Na+/Li+ and plasma copper concentration (R s=−0.508, p<0.05). Plasma copper concentration significantly influences the activity of sodium transporting systems in erythrocyte membrane. Copper supplementation could be expected to provide therapeutic benefits for hypertensive patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Lijnen, Alterations in sodium metabolism as an etiological model for hypertension, Cardiovasc. Drugs Ther. 9, 377–399 (1995).

    Article  PubMed  CAS  Google Scholar 

  2. A. Semplicini, M. Canessa, M. G. Mozzato, et al., Red blood cell Na+/H+ and Li+/Na+ exchange in patients with essential hypertension, Am. J. Hypertens. 2, 903–908 (1989).

    PubMed  CAS  Google Scholar 

  3. P. Delva, C. Pastori, M. Degan, et al., Erythrocyte Na+/H+ exchanger kinetics and Na+/Li+ countertransport activity in essential hypertensive patients, Eur. J. Clin. Invest. 26, 64–70 (1996).

    Article  PubMed  CAS  Google Scholar 

  4. A. Alonso, A. Arrazola, A. Garciandia, N. Esparza, C. Gomez-Alamillo, and C. Diez, Erythrocyte anion exchanger activity and intracellular pH in essential hypertension, Hypertension 22, 348–356 (1993).

    PubMed  CAS  Google Scholar 

  5. J. Bober, K. Kędzierska, E. Kwiatkowska, et al., The erythrocyte sodium-proton exchanger activity in patients with primary hypertension. Pol. Arch. Med. Wewn. 1, 619–624 (2002).

    Google Scholar 

  6. M. Soleimani and G. Singh, Physiologic and molecular aspects of the Na+/H+ exchangers in health and disease processes, J. Invest. Med. 43, 419–430 (1995).

    CAS  Google Scholar 

  7. M. Wehling, J. Kasmayar, and K. Theisen, The Na+/H+ exchanger is stimulated and cell volume increased in lymphocytes from patients with essential hypertension, J. Hypertens. 9, 519–524 (1991).

    Article  PubMed  CAS  Google Scholar 

  8. M. Canessa, K. Morgan, R. Goldszer, T. J. Moore, and A. Spalvins, Kinetics abnormalities of the red blood cell sodium-proton exchange in hypertensive patients, Hypertension 17, 340–348 (1991).

    PubMed  CAS  Google Scholar 

  9. O. Giampietro, E. Matteucci, G. Catapano, et al., Microalbuminuria and erythrocyte sodium-hydrogen exchange in essential hypertension. Hypertension 25, 981–985 (1995).

    PubMed  CAS  Google Scholar 

  10. A. de la Sierra, A. Coca, J. C. Pare, M. Sanchez, V. Valls, and A. Urbano-Marquez, Erythrocyte ion fluxes in essential hypertensive patients with left ventricular hypertrophy, Circulation 88, 1628–1633 (1993).

    PubMed  Google Scholar 

  11. J. Zicha, Red cell ion transport abnormalities in experimental hypertension, Fundam. Clin. Pharmacol. 7, 129–141 (1993).

    Article  PubMed  CAS  Google Scholar 

  12. H. E. Ives, Ion transport defects and hypertension. Where is the link?. Hypertension 14, 590–597 (1989).

    PubMed  CAS  Google Scholar 

  13. M. Avkiran, Protection of the ischaemic myocardium by Na+/H+ exchange inhibitors: potential mechanisms of action, Basic Res. Cardiol. 96, 306–311 (2001).

    Article  PubMed  CAS  Google Scholar 

  14. M. Karmazyn, Role of sodium-hydrogen exchange in cardiac hypertrophy and heart failure: a novel and promising therapeutic target, Basic Res. Cardiol. 96, 325–328 (2001).

    Article  PubMed  CAS  Google Scholar 

  15. E. Matteucci, V. Di Bello, and O. Giampietro, Integrated analysis of erythrocyte Na+/H+ antiport activity and left ventricular nyocardial function in type I insulin-dependent diabetes mellitus, J. Diabetes Complic. 9, 208–211 (1995).

    Article  CAS  Google Scholar 

  16. M. Toborek, T. Wasik, M. Drozdz, M. Klin, K. Magner-Wrobel, and E. Kopieczna Grzebieniak, Effect of hemodialysis on lipid peroxidation and antioxidatant system in patients with chronic renal failure, Metabolism 41, 1229–1232 (1992).

    Article  PubMed  CAS  Google Scholar 

  17. M. Cutaia and N. Parks, Oxidant stress decreased Na+/H+ antiport activity in bovine pulmonary artery endothelial cells, Am. J. Physiol. 267, L649-L659 (1994).

    PubMed  CAS  Google Scholar 

  18. Q. Hu, Y. Xia, S. Corda, J-L. Zweier, and R-C. Ziegelstein, Hydrogen peroxidase decreased pHi in human aortic endothelial cells by inhibiting Na+/H+ exchange, Circ. Res. 83, 644–651 (1998).

    PubMed  CAS  Google Scholar 

  19. E. Matteucci and O. Giampietro. Oxidative stress in families of type 1 diabetic patients, Diabet. Care. 24, 167–168 (2001).

    Article  CAS  Google Scholar 

  20. A. Y. Bogdanova, L. V. Virkki, G. P. Gusev, and M. Nikinmaa, Copper effects on ion transport across lamprey erythrocyte membrane: Cl(−)/OH(−) exchange induced by cuprous ions, Toxicol. Appl. Pharmacol. 159, 204–131 (1999).

    Article  PubMed  CAS  Google Scholar 

  21. A. Y. Bogdanova, M. Gassman, and M. Nikinmaa, Copper ion redox state is critical for its effects on ion transport pathways and methaemoglobin formation in trout erythrocyte, Chem. Biol. Ineract. 139, 43–59 (2002).

    Article  CAS  Google Scholar 

  22. I. Hajjar and T. Kotchen, Regional variations of blood pressure in the United States are associated with regional variations in dietary intakes: the NHANES-III data, J. Nutr. 133, 211–214 (2003).

    PubMed  CAS  Google Scholar 

  23. M. D. Chen and W. H. Sheu, Plasma status of selected minerals in hypertensive men with and without insulin resistance, J. Trace Elements Med. Biol. 14, 228–231 (2001).

    Article  CAS  Google Scholar 

  24. C. Russo, O. Olivieri, D. Girelli, et al., Anti-oxidant status and lipid peroxidation in patients with essential hypertension, J. Hypertens. 16, 1267–1271 (1998).

    Article  PubMed  CAS  Google Scholar 

  25. L. M. Klevay, Cardiovascular disease from copper deficiency-a history, J. Nutr. 130(2S Suppl.), 489S-492S (2000).

    PubMed  CAS  Google Scholar 

  26. S. K. Taneja, M. Mahajan, S. Gupta, and K. P. Singh, Assessment of copper and zinc status in hair and urine of young women descendants of NIDDM parents, Biol. Trace Element Res. 62, 255–264 (1998).

    CAS  Google Scholar 

  27. O. Jung, S. L. Marklund, H. Geiger, T. Pedrazzini, R. Busse, and R. P. Brandes, Extracellular superoxide dismutase is a major determinant of nitric oxide bioavailability: in vivo and ex vivo evidence from ecSOD-deficient mice, Circ. Res. 93, 622–629 (2003).

    Article  PubMed  CAS  Google Scholar 

  28. C. S. Wilcox, Redox regulation of the afferent arteriole and tubuloglomerular feedback, Acta Physiol. Scand. 179, 217–223 (2003).

    Article  PubMed  CAS  Google Scholar 

  29. S. N. Orlov, I. Y. Postnov, N. I. Pokudin, V. Y. Kukharenko, and Y. V. Postnov, Na+-H+ exchange and other ion-transport systems in erythrocytes of essential hypertensives and spontaneously hypertensive rats: a comparative analysis, J. Hypertens. 7, 781–788 (1989).

    Article  PubMed  CAS  Google Scholar 

  30. R. P. Garay, C. Nazaret, J. Diez, et al., Stimulation of K+ fluxes by diuretic drugs in human red cells, Biochem. Pharmacol. 33, 2013–2020 (1984).

    Article  PubMed  CAS  Google Scholar 

  31. G. Zerbini, A. Maestroni, D. Breviario, R. Mangili, and G. Casari, Alternative splicing of NHE-1 mediates Na−Li countertransport and associates with activity rate, Diabetes 52, 1511–1518 (2003).

    Article  PubMed  CAS  Google Scholar 

  32. L. L. Ng, P. A. Quinn, F. Baker, and S. J. Carr, Red cell Na+/Li+ countertransport and Na+/H+ exchanger isoforms in human proximal tubules, Kidney Int. 58, 229–235 (2000).

    Article  PubMed  CAS  Google Scholar 

  33. G. Zerbini, F. Podesta, G. Meregalli, G. Deferrari, and R. Pontremoli, Fibroblast Na+−Li+ countertransport rate is elevated in essential hypertension, J. Hypertens. 19, 1263–1269 (2001).

    Article  PubMed  CAS  Google Scholar 

  34. A. A. McDonough, P. K. Leong, and L. E. Yang, Mechanisms of pressure natriuresis: how blood pressure regulates renal sodium transport, Ann. NY Acad. Sci. 986, 669–677 (2003).

    Article  PubMed  CAS  Google Scholar 

  35. J. Bober, E. Kwiatkowska, K. Ciechanowski, et al., Do trace elements modify the activity of erythrocyte sodium-proton exchanger in hemodialyzed patients? Biol. Trace Element Res., 104, 107–120 (2005).

    Article  CAS  Google Scholar 

  36. D. A. Clopton and P. Saltman, Copper-specific damage in human erythrocytes exposed to oxidative stress, Biol. Trace Element Res. 56, 231–240 (1997).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kędzierska, K., Bober, J., Ciechanowski, K. et al. Copper modifies the activity of sodium-transporting systems in erythrocyte membrane in patients with essential hypertension. Biol Trace Elem Res 107, 21–32 (2005). https://doi.org/10.1385/BTER:107:1:021

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/BTER:107:1:021

Index Entries

Navigation