Skip to main content
Log in

Rare earth elements in forest-floor herbs as related to soil conditions and mineral nutrition

  • Original Articles
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Mixtures of rare earth elements (REEs) in fertilizers are widely used in Chinese agriculture to improve crop nutrition. REE concentrations in wild-growing plants, especially herbs, are little known. This study describes differences in the concentrations and proportions of REEs in eight forest-floor herbaceous plants and relates these differences to soil and mineral nutrient conditions. REEs studied were yttrium (Y), lanthanum (La), cerium (Ce), praseodymium (Pr), neodymium (Nd), samarium (Sm), europium (Eu), gadolinium (Gd), terbium (Tb), dysprosium (Dy), holmium (Ho), erbium (Er), thulium (Tm), ytterbium (Yb), and lutetium (Lu). Leaf concentrations of sum REEs differed more than one order of magnitude between species, being highest in Anemone nemorosa (10.1 nmol/g dry mass) and lowest in Convallaria majalis (0.66 nmol/g) from the same site. Leaf concentrations of all REEs correlated positively (p<0.001), as did sum REE with calcium (Ca) and strontium (Sr) concentrations (p<0.001). A negative relationship (r=−0.83, (p<0.001) was measured between phosphorus (P) concentrations and sum REE concentrations in leaves. However, the proportions of the single REEs in the REE sum differed among species. In A. nemorosa, 57% of the molar REE sum was taken by Y+La, and only 21% by Ce. The other extreme was Maianthemum bifolium, with 37% La+Y and 41% Ce. These two species had 2.7–3.0% of the REE sum as heavier lanthanides, compared to 4.1–5.2% in the six other species. No clear relationship between soil properties or REE contents and leaf REE concentrations was detected. For La, however, an overrepresentation in leaves prevailed throughout all species compared to soils, whereas particularly Nd, Sm, and Tb had a lower proportion in the leaves of all species than in their soils. Possible uptake mechanisms of REEs in plants are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Tyler, Rare earth elements in soil and plant systems—a review, Plant Soil 267, 191–206 (2004).

    Article  CAS  Google Scholar 

  2. N. N. Greenwood and A. Earnshaw, Chemistry of the Elements, Pergamon, Oxford (1984).

    Google Scholar 

  3. S. Nagao, R. R. Rao, R. W. D. Killey, and J. L. Young, Migration behaviour of Eu(III) in a sandy soil in the presence of dissolved organic materials, Radiochim. Acta 82, 205–211 (1998).

    CAS  Google Scholar 

  4. V. V. Nikonov, N. V. Lukina, and M. V. Frontasyeva, Trace elements in Al−Fe-humus podzolic soils subject to aerial pollution from the copper-nickel production industry in conditions of varying lithogenic background, Eurasian Soil Sci. 32, 338–349 (1999).

    Google Scholar 

  5. J. S. Ogala, H. J. Behr, and A. M. Vandenkerkhof, Fluid inclusion and cathodoluminescence studies on fluorite from the Kerio Valley, Kenya, J. African Earth Sci. 18, 309–323 (1994).

    Article  Google Scholar 

  6. M. Ghaderi, J. M. Palin, I. H. Campbell, and P. J. Sylvester, Rare earth element systematics in scheelite from hydrothermal gold deposits in the Kalgoorlie-Norseman region, Western Australia, Econ. Geol. Bull. Soc. Econ. Geol. 94, 423–437 (1999).

    CAS  Google Scholar 

  7. X. Pang, D. C. Li, and A. Peng, Application of rare-earth elements in the agriculture of China and its environmental behavior in soil, Environ. Sci. Pollut. 9, 143–148 (2002).

    CAS  Google Scholar 

  8. G. Tyler and T. Olsson, Conditions related to solubility of rare and minor elements in forest soils, J. Plant Nutr. Soil Sci. 165, 594–601 (2002).

    Article  CAS  Google Scholar 

  9. F. Li, X. Shan, T. Zhang, and S. Zhang, Evaluation of plant availability of rare earth elements in soils by chemical fractionation and multiple regression analysis, Environ. Pollut. 102, 269–277 (1998).

    Article  CAS  Google Scholar 

  10. A. Bibak, S. Stürup, L. Knudsen, and V. Gundersen, Concentrations of 63 elements in cabbage and sprouts in Denmark, Commun. Soil Sci. Plant Anal. 30, 2409–2418 (1999).

    CAS  Google Scholar 

  11. B. Markert and Z. D. Li, Natural background concentrations of rare earth elements in a forest ecosystem, Sci. Total Environ. 103, 27–35 (1991).

    Article  CAS  Google Scholar 

  12. G. Tyler, Changes in the concentrations of major, minor and rare-earth elements during leaf senescence and decomposition in a Fagus sylvatica forest, Forest Ecol. Manage. 206, 167–177 (2005).

    Article  Google Scholar 

  13. T. Ozaki, S. Enomoto, Y. Minai, S. Ambe, and Y. Makide, A survey of trace elements in pteridophytes, Biol. Trace Element Res. 74, 259–273 (2000).

    Article  CAS  Google Scholar 

  14. W. Zhenggui, Y. Ming, Z. Xun, et al., Rare earth elements in naturally grown fern Dicranopteris linearis in relation to their variation in soils in South-Jiangxi region (Southern China), Environ. Pollut. 114, 345–355 (2001).

    Article  Google Scholar 

  15. T. Ozaki, S. Ambe, S. Enomoto, Y. Minai, S. Yoshida, and Y. Makide, Multitracer study of the uptake mechanism of yttrium and rare earth elements by autumn fern, Radiochim. Acta 90, 303–307 (2002).

    Article  CAS  Google Scholar 

  16. F. F. Fu, T. Akagi, and S. Yabuki, Origin of silica particles found in the cortex of Matteuccia roots, Soil Sci. Soc. Am. J. 66, 1265–1271 (2002).

    Article  CAS  Google Scholar 

  17. F. F. Fu, T. Akagi, S. Yabuki, and M. Iwaki, The variation of REE (rare earth elements) pattern in soil-grown plants: a new proxy for the source of rare earth elements and silicon in plants, Plant Soil 235, 53–64 (2001).

    Article  CAS  Google Scholar 

  18. C. Kelley, R. E. Mielke, D. Dimaquibo, A. J. Curtis, and J. G. Dewitt, Adsorption of Eu(III) onto roots of water hyacinth, Environ. Sci. Technol. 33, 1439–1443 (1999).

    Article  CAS  Google Scholar 

  19. C. Kelley, A. J. Curtis, J. K. Uno, and C. L. Berman, Spectroscopic studies of the interaction of Eu(III) with roots of water hyacinth, Water Air Soil Pollut. 119, 171–176 (2000).

    Article  CAS  Google Scholar 

  20. E. Johannes, J. M. Brosnan, and D. Sanders, Calcium channels in the vacuolar membrane of plants—multiple pathways for intracellular calcium mobilization, Philos. Trans. Roy. Soc. B 338, 105–112 (1992).

    Article  CAS  Google Scholar 

  21. B. Klusener, G. Boheim, H. Liss, J. Engelberth, and E. W. Weiler, Gadolinium-sensitive, voltage-dependent calcium-release channels in the endoplasmic reticulum of a higherplant mechanoreceptor organ, EMBO J. 14, 2708–2714 (1995).

    PubMed  CAS  Google Scholar 

  22. B. D. Lewis and E. P. Spalding, Nonselective block by La3+ of Arabidopsis ion channels involved in signal transduction, J. Membr. Biol. 62, 81–90 (1998).

    Article  Google Scholar 

  23. Y. S. Gao, F. L. Zeng, A. Yi, S. Ping, and L. H. Jing, Research of the entry of rare earth elements Eu3+ and La3+ into plant cell, Biol. Trace Element Res. 91, 253–265 (2003).

    Article  CAS  Google Scholar 

  24. J. Takada, T. Sumino, K. Nishimura, Y. Tanaka, K. Kawamoto, and M. Akaboshi, Unusual interrelationship between rare earth element and calcium contents in fern leaves, J. Radioanal. Nucl. Chem. 239, 609–612 (1999).

    Article  CAS  Google Scholar 

  25. I. Morishima, M. Kurono, and Y. Shiro, Presence of endogeneous calcium ion in horseradish peroxidase. Elucidation of metal-binding site by substitutions of divalent and lanthanide ions for calcium and use of metal-induced NMR proton and calcium-113 resonances, J. Biol. Chem. 261, 9391–9399 (1986).

    PubMed  CAS  Google Scholar 

  26. Y. Z. Wei and X. B. Zhou, Effect of neodymium on physiological activities in oilseed rape during calcium starvation, J. Rare Earth 18, 57–61 (2000).

    Google Scholar 

  27. X. K. Xu, W. Z. Zhu, Z. J. Wang, and G. J. Witkamp, Distribution of rare earths and heavy metals in field-grown maize after application of rare earth-containing fertilizer, Sci. Total Environ. 293, 97–105 (2002).

    Article  PubMed  CAS  Google Scholar 

  28. E. Diatloff, C. J. Asher, and F. W. Smith, The effects of rare earth elements on the growth and nutrition of plants. Rare Earths'98, Mater. Sci. Forum 315, 354–360 (1999).

    Google Scholar 

  29. X. Hu, Z. H. Ding, Y. J. Chen, X. R. Wang, and L. M. Dai, Bioaccumulation of lanthanum and cerium and their effects on the growth of wheat (Triticum aestivum L.) seedlings, Chemosphere 48, 621–629 (2002).

    Article  PubMed  CAS  Google Scholar 

  30. G. Tyler, Ionic charge, radius, and potential control root/soil concentration ratios of fifty cationic elements in the organic horizon of a beech (Fagus sylvatica) forest podzol, Sci. Total Environ. 329, 231–239 (2004).

    Article  PubMed  CAS  Google Scholar 

  31. B. Wen, B. D. A. Yuan, X. Q. Shan, F. L. Li, and S. Z. Zhang, The influence of rare earth element fertilizer application on the distribution and bioaccumulation of rare earth elements in plants under field conditions, Chem. Spect. Bioavail. 13, 39–48 (2001).

    CAS  Google Scholar 

  32. S. Z. Zhang and X. Q. Shan, Speciation of rare earth elements in soil and accumulation by wheat with rare earth fertilizer application, Environ. Pollut. 112, 395–405 (2001).

    Article  PubMed  CAS  Google Scholar 

  33. G. Tyler and T. Olsson, Plant uptake of major and minor elements as influenced by soil acidity and liming, Plant Soil 230, 307–321 (2001).

    Article  CAS  Google Scholar 

  34. E. Diatloff, F. W. Smith, and C. J. Asher, Rare-earth elements and plant growth. 1. Effects of lanthanum and cerium on root elongation of corn and mungbean, J. Plant Nutr. 18, 1963–1976 (1995).

    CAS  Google Scholar 

  35. P. A. Wahid, M. S. Valiathan, N. V. Kamalam, et al., Effect of rare earth elements on growth and nutrition of coconut palm and root competition for these elements between the palm and Calotropis gigantea, J. Plant Nutr. 23, 329–338 (2000).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tyler, G., Olsson, T. Rare earth elements in forest-floor herbs as related to soil conditions and mineral nutrition. Biol Trace Elem Res 106, 177–191 (2005). https://doi.org/10.1385/BTER:106:2:177

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/BTER:106:2:177

Index Entries

Navigation