Skip to main content
Log in

Effect of aluminum exposure on pteridine metabolism

  • Original Articles
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Occupational and environmental aluminum (Al) exposure cause serious health problems by interaction with biological systems. Al is one of the most documented metals because its cellular targets are unclear biochemical processes and membranes of organisms. The major aim of the present study was to investigate the alteration of serum and urine aluminum in occupational exposure and to observe whether the metal exposure could cause any changes in pteridine-pathway-related critical compounds such as urinary neopterin and biopterin and blood dihydropteridine reductase (DHPR). In this study, determination of the metal concentrations was carried out in Al-exposed workers (n=23) and healthy volunteers (n=18) by using a tomic absorption spectrometer. DHPR enzyme activity and levels of neopterin and biopterin were detected by spectrophotometric and high-performance liquid chromatographic methods, respectively. It was found that occupational exposure to the metal led to a statistically significant increase in serum Al levels compared to the controls (p<0.05). At the same time, urinary neopterin and biopterin concentrations of the exposed group were higher than nonexposed subjects (both p<0.05). The correlations among Al levels and DHPR activity, magnesium concentration in serum and urine, working years, smoking status, and age were evaluated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. O. Ganrot, Metabolism and possible health effects of aluminium, Environ. Health Perspect. 65, 363–441 (1986).

    Article  PubMed  CAS  Google Scholar 

  2. P. Nayak, Aluminum: impacts and disease, Environ. Res. 89, 101–115 (2002).

    Article  PubMed  CAS  Google Scholar 

  3. A. Lione, Aluminum toxicology and the aluminum-containing medications, Pharm. Ther. 29, 255–285 (1985).

    Article  CAS  Google Scholar 

  4. R. A. Yokel and P. J. McNamara, Aluminium toxicokinetics: an updated minireview, Pharmacol. Toxicol. 88, 159–167 (2001).

    Article  PubMed  CAS  Google Scholar 

  5. IPCS, Environmental Health Criteria 194: Aluminium, WHO, Geneva (1997).

    Google Scholar 

  6. C. D. Klaassen, Casarette & Doull's Toxicology, The Basic Science of Poisons, 6th ed., McGraw-Hill, New York (2001).

    Google Scholar 

  7. R. Duffin, P. S. Gilmour, R. P. Schins, et al., Aluminium lactate treatment of DQ12 quartz inhibits its ability to cause inflammation, chemokine expression, and nuclear factorkappaB activation, Toxicol. Appl. Pharmacol. 176, 10–17 (2001).

    Article  PubMed  CAS  Google Scholar 

  8. M. S. Golub, P. T. Takeuchi, M. E. Gershwin, and S. H. Yoshida, Influence of dietary aluminum on cytokine production by mitogen-stimulated spleen cells from Swiss Webster mice, Immunopharmacol. Immunotoxicol. 15, 605–619 (1993).

    Article  PubMed  CAS  Google Scholar 

  9. C. Tzanno-Martins, L. S. Azevedo, N. Orii, et al., The role of experimental chronic renal failure and aluminium intoxication in cellular immune response, Nephrol. Dial. Transplant. 11, 474–480 (1996).

    PubMed  CAS  Google Scholar 

  10. H. Wachter, D. Fuchs, A. Hausen, G. Reibnegger, and E. R. Werner, Neopterin as marker for activation of cellular immunity: immunologic basis and clinical application, Adv. Clin. Chem. 27, 81–141 (1989).

    PubMed  CAS  Google Scholar 

  11. H. Wachter, D. Fuchs, A. Hausen, et al., Neopterin Biochemistry: Methods of Clinical Application, de Gruyter, Berlin (1992).

    Google Scholar 

  12. C. Murr, L. C. Fuith, B. Widner, B. Wirleitner, G. Baier-Bitterlich, and D. Fuchs, Increased neopterin concentrations in patients with cancer: indicator of oxidative stress? Anticancer Res., 19, 1721–1728 (1999).

    PubMed  CAS  Google Scholar 

  13. A. Niederwieser and H. C. Curtius, Tetrahydrobiopterin biosynthetic pathway and deficiency, Enzyme 38, 302–311 (1987).

    PubMed  CAS  Google Scholar 

  14. H. Shintaku, A. Niederwieser, W. Leimbacher, and H. C. Curtius, Tetrahydrobiopterin deficiency: assay for 6-pyruvoyl-tetrahydropterin synthase activity in erythrocytes, and detection of patients and heterozygous carries. Eur. J. Pediatr., 147, 15–19 (1988).

    Article  PubMed  CAS  Google Scholar 

  15. Z. Z. Altindag, G. Sahin, F. Inanici, and Z. Hascelik, Urinary neopterin excretion and dihydropteridine reductase activity in rheumatoid arthritis, Rheumatol. Int. 18, 107–111 (1998).

    Article  PubMed  CAS  Google Scholar 

  16. Z. Z. Altindag, G. Sahin, A. Isimer, A. Akpek, and Z. Hascelik, Dihydropteridine reductase activity and urinary neopterin levels in leukemias and lymphomas: is there any correlation between these two parameters? Leuk. Lymphoma 35, 367–374 (1999).

    Article  PubMed  CAS  Google Scholar 

  17. T. Baydar, A. Papp, A. Aydin, etal., Accumulation of aluminum in rat brain, Biol. Trace Element Res. 92, 231–244 (2003).

    Article  CAS  Google Scholar 

  18. J. Harris, B. B. Bartelson, E. Barker, R. Balkissoon, K. Kreiss, and L. S. Newman, Serum neopterin in chronic beryllium disease, Am. J. Ind. Med. 32, 21–26 (1997).

    Article  PubMed  CAS  Google Scholar 

  19. Z. Z. Altindag, T. Baydar, A. Isimer, and G. Sahin, Neopterin as a new biomarker for the evaluation of occupational exposure to silica, Int. Arch. Occup. Environ. Health 76, 318–322 (2003).

    PubMed  CAS  Google Scholar 

  20. W. Schobersberger, G. Hoffmann, P. Hobisch-Hagen, et al., Neopterin and 7,8-dihydroneopterin induce apoptosis in the rat alveolar epithelial cell line L2, FEBS Lett. 397, 263–268 (1996).

    Article  PubMed  CAS  Google Scholar 

  21. I. Smith, D. W. Howells, and K. Hyland, Pteridines and mono-amines: relevance to neurological damage, Postgrad. Med. J. 62, 113–123 (1986).

    Article  PubMed  CAS  Google Scholar 

  22. R. J. Leeming, and J. A. Blair, Dialysis dementia aluminium, and tetrahydrobiopterin metabolism, Lancet 1 (8115), 556 (1979).

    Article  PubMed  CAS  Google Scholar 

  23. P. Altmann, F. Al-Salihi, K. Butter, et al., Serum aluminium levels and erythrocyte dihydropteridine reductase activity in patients on hemodialysis. N. Engl. J. Med., 317, 80–84 (1987).

    Article  PubMed  CAS  Google Scholar 

  24. S. M. Sprague and J. G. Umans, Aluminum and dihydropteridine reductase in dialysis patients, N. Engl. J. Med. 317, 1604 (1987).

    Google Scholar 

  25. S. Milstien and S. Kaufman, Letter to the editor, N. Engl. J. Med. 317, 1605 (1987).

    Google Scholar 

  26. P. Altmann, U. Dhanesha, C. Hamon, J. Cunningham, J. Blair, and F. Marsh, Disturbance cerebral function by aluminium in haemodialysis patients without overt aluminium toxicity, Lancet 2 (8653), 7–12 (1989).

    Article  PubMed  CAS  Google Scholar 

  27. I. Smith and K. Hyland, Disturbance of cerebral function by aluminium in haemodialysis patients, Lancet 2(8661), 501–502 (1989).

    Article  Google Scholar 

  28. K. I. Bolla, S. Milstien, G. Briefel, L. Wieler, and S. Kaufman, Dihydropteridine reductase activity: lack of association with serum aluminium levels and cognitive functioning in patients with end-stage renal disease, Neurology 41, 1806–1809 (1991).

    PubMed  CAS  Google Scholar 

  29. K. A. Winship, Toxicity of aluminium: a historical review, Part 2. Toxicol. Rev. 12, 177–211 (1993).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baydar, T., Engin, A.B., Aydin, A. et al. Effect of aluminum exposure on pteridine metabolism. Biol Trace Elem Res 106, 153–164 (2005). https://doi.org/10.1385/BTER:106:2:153

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/BTER:106:2:153

Index Entries

Navigation