Biological Trace Element Research

, Volume 106, Issue 2, pp 117–121 | Cite as

Trace elements in nasal polyps

  • Beata Rostkowska-Nadolska
  • Maria Borawska
  • Katarzyna Hukalowicz
Original Articles


The reason why nasal polyps occur has not been explained yet. In the literature, the role of immunological factors are considered and broadly discussed, but there is no information on the role of microelements in the pathogenesis of nasal sinusal polyposis. In this study concentrations of Cu, Se, Zn, and Pb in tissue of nasal polyps were determined. The tissue samples were taken from 41 patients during polypectomia procedures, whereas healthy tissue from nasal mucosa was sampled from 10 patients during endonasal surgery. The concentrations of the elments were determined by atomic absorption spectrometry. It was found that the concentrations of all the elements were significantlylower in polyp tissues than in healthy nasal mucosa. The reasons for this are unclear in the present study

Index Entries

Trace elements nasal polyps 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. M. Bernstein, J. Gorfien, B. Noble, Role of allergy in nasal polyposis: a review., Otolaryngol. Head Neck Surg. 113(6), 724–732 (1995).PubMedCrossRefGoogle Scholar
  2. 2.
    J. S. Allen, R. Eisma, G. Leonard, and D. Kreutzer, Interleukin-3, interleukin-5, and GM-CSF expression in nasal polyps, Am. J. Otolaryngol. 18, 239–246 (1997).PubMedCrossRefGoogle Scholar
  3. 3.
    D. L. Hamilos, D. Y. Leung, D. P. Huston, A. Kamil, R. Wood, and Q. Hamid, Gm-CSF, IL-5 and RANTES immunoreactivity and mRNA expression in chronic hyperplastic sinusitis with nasal polyposis (NP), Clin. Exp. Allergy 28, 1145–1152 (1998).PubMedCrossRefGoogle Scholar
  4. 4.
    C. H. Lee, C. S. Rhee, and Y. G. Min, Cytokine gene expression in nasal polyps, Ann. Otol. Rhinol. Laryngol. 107, 665–670 (1998).PubMedGoogle Scholar
  5. 5.
    K. Shosuke, H. Yusuke, M. Mariko, and O. Shinji, The role of metals in site-specific DNA damage with reference to carcinogenesis, Free Radical Biol. Med. 32(9), 822–832 (2002).CrossRefGoogle Scholar
  6. 6.
    M. Krachler, W. Domej, and K. J. Irgolic, Concentrations of trace elements in osteoarthritic knee-joint effusions, Biol. Trace Element Res. 75(1–3), 253–263 (2000).CrossRefGoogle Scholar
  7. 7.
    M. Onerci and S. Kus, Trace elements in chronic sinusitis, Eur. Arch. Otorhinolaryngol. 252, 373–375 (1995).Google Scholar
  8. 8.
    U. Srinivas, J. H. Braconier, B. Jeppsson, M. Abdulla, B. Akesson, and P. A. Ockerman, Trace element alterations in infectious diseases, Scand. J. Clin. Lab. Invest. 48, 495–500 (1988).PubMedGoogle Scholar
  9. 9.
    W. C. Hawkes, D. S. Kelley, and P. C. Taylor, The effects of dietary selenium on the immune system in healthy men, Biol. Trace Element Res. 81, 189–213 (2001).CrossRefGoogle Scholar
  10. 10.
    N. Wellinghausen, M. Martin, and L. Rink Zinc inhibits interleukin-1 dependent T cell stimulation, Eur. J. Immunol. 27, 2529–2535 (1997).PubMedCrossRefGoogle Scholar
  11. 11.
    R. K. Chandra, Trace element regulation of immunity and infection, J. Am. Coll. Nutr. 4, 5–16 (1985).PubMedGoogle Scholar
  12. 12.
    T. M. Rice, R. W. Clarke, J. J. Godleski, et al., Differential ability of transition metals to induce pulmonary inflammation, Toxicol. Appl. Pharmacol. 177(1), 46–53 (2001).PubMedCrossRefGoogle Scholar
  13. 13.
    T. Truong, Q. Ai, R. E. Ruffin, et al., Aftered zinc homeostasis and caspase-3 activity in murine allergic airway inflammation, Am. J. Respir. Cell. Mol. Biol. 27(3), 286–296 (2002).Google Scholar
  14. 14.
    P. Landigan, Current issues in the epidemiology and toxicology of occupational exposure to lead, Environ. Health Perspect. 89, 61–66 (1990).CrossRefGoogle Scholar
  15. 15.
    M. M. Verberk, T. E. P. Willems, A. J. W. Verplanke, and F. A. De Wolff, Environmental load and renal effects in children, Arch. Environ. Health 51, 83–87 (1996).PubMedCrossRefGoogle Scholar
  16. 16.
    W. Deng and R. D. Poretz Protein kinase C activation is required for the lead-induced inhibition of proliferation and differnetiation of cultured oligodendroglial progenitor cells, Brain Res. 929(1), 87–95 (2002).PubMedCrossRefGoogle Scholar
  17. 17.
    Y. Heo, P. J. Parsons, and D. A. Lawrence, Lead differentially modifies cytokine production in vitro and in vivo, Toxicol. Appl. Pharmacol. 138, 149–157 (1996).PubMedCrossRefGoogle Scholar
  18. 18.
    R. Pavankar, Nasal polyposisan update, Curr. Opin. Allergy Clin. Immunol. 3, 1–6 (2003).CrossRefGoogle Scholar
  19. 19.
    W. Victery, D. Thomas, P. Schoeps, and A. J. Vander, Lead increases urinary zinc excretions in rats, Biol. Trace Element Res. 4, 211 (1982).Google Scholar

Copyright information

© Humana Press Inc. 2005

Authors and Affiliations

  • Beata Rostkowska-Nadolska
    • 1
  • Maria Borawska
    • 2
  • Katarzyna Hukalowicz
    • 2
  1. 1.Department of Otorhinolaryngology, Head and Neck SurgeryMedical University of WroclawPoland
  2. 2.Department of BromatologyMedical University of BialystokBialystokPoland

Personalised recommendations