Skip to main content
Log in

Plasma and erythrocyte selenium and glutathione peroxidase activity in preterm infants at risk for bronchopulmonary dysplasia

  • Original Articles
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The purpose of this study was to examine the relationships between selenium status, as measured by plasma and erythrocyte selenium and glutathione peroxidase (GPx) activity, and other postnatal factors, including selenium intake, gestational age, and oxygen dependence in preterm infants at risk for bronchopulmonary dysplsia. Eighteen preterm infants of 30 wk gestational age or less were included. At postnatal wk 1 and 4, selenium concentrations and GPx activity were measured and oxygen dependence and daily selenium intakes were determined from the medical chart. Plasma and erythrocyte selenium concentrations decreased from wk 1 to wk 4, whereas erythrocyte GPx activity increased. Increased selenium intakes during wk 1 were associated with increased erythrocyte GPx activity at both time-points, as well as a decreased need for supplemental oxygen on d 28. Preterm infants display increasing erythrocyte GPx activity despite declines in plasma and erythrocyte selenium. GPx activity might be enhanced by very early selenium supplementation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. A. Lemons, C. R. Bauer, W. Oh, et al., Very low birth weight outcomes of the National Institute of Child Health and Human Development National, Research Network, January 1995 through December 1996, Pediatrics, 107, 1–8 (2001).

    Article  Google Scholar 

  2. B. N. Manktelow, E. S. Draper, S. Annamalai, and D. Field, Factors affecting the incidence of chronic lung disease of prematurity in 1987, 1992, and 1997, Arch. Dis. Child. Fetal Neonatal Ed. 85, F33-F35 (2001).

    Article  PubMed  CAS  Google Scholar 

  3. National Institutes of Health: National Heart, Lung, and Blood Institute, Bronchopulmonary Dysplasia, US Government Printing Office, Washington, DC (1998).

    Google Scholar 

  4. R. P. Jankov, X. Luo, A. Campbell, et al. Fibroblast growth factor receptor-1 and neonatal compensatory lung growth after exposure of 95% oxygen, Am. J. Respir. Crit. Care Med. 167, 1554–1561 (2003).

    Article  PubMed  Google Scholar 

  5. Y. Ohki, M. Kato, H. Kimura, Y. Nako, K. Tokuyama, and A. Morikawa, Elevated type IV collagen in bronchoalveolar lavage fluid from infants with bronchopulmonary dysplasia, Biol. Neonate 79, 34–38 (2001).

    Article  PubMed  CAS  Google Scholar 

  6. T. Ogihara, K. Hirano, T. Morinobu, et al., Raised concentrations of aldehyde lipid peroxidation products in premature infants with chronic lung disease, Arch. Dis. Child. Fetal Neonatal Ed. 80, F21-F25 (1999).

    Article  PubMed  CAS  Google Scholar 

  7. B. C. Schock, D. G. Sweet, H. L. Halliday, I. S. Young, and M. Ennis, Oxidative stress in lavage fluid of preterm infants at risk of chronic lung disease, Am. J. Physiol. Lung Cell Mol. Physiol. 281, L1386-L1391 (2001).

    PubMed  CAS  Google Scholar 

  8. V. Bhandari, N. Maulik, and M. Kresch, Hyperoxia causes an increase in antioxidant enzyme activity in adult and fetal rat type II pneumocytes, Lung 178, 53–60 (2000).

    Article  PubMed  CAS  Google Scholar 

  9. J. C. Lavoie, M. Spalinger, and P. Chessex, Glutathione peroxidase activity in the lungs of newborn guinea pigs, Lung 177, 1–7 (1999).

    Article  PubMed  CAS  Google Scholar 

  10. F. H. Hawker, H. E. Ward, P. M. Stewart, L. A. Wynne, and P. J. Snitch, Selenium deficiency augments the pulmonary toxic effects of oxygen exposure in the rat, Eur. Respir. J. 6, 1317–1323 (1993).

    PubMed  CAS  Google Scholar 

  11. H. Y. Kim, M. F. Picciano, and M. A. Wallig, Postnatal selenium repletion protects lungs of neonatal rats from hyperoxia, J. Nutr. 122, 1760–1767 (1992).

    PubMed  CAS  Google Scholar 

  12. H. Y. Kim, M. F. Picciano, M. A. Wallig, and J. A. Milner, The role of selenium nutrition in the development of the neonatal rat lung, Pediatr. Res. 29, 440–445 (1991).

    Article  PubMed  Google Scholar 

  13. A. C. Muntau, M. Streiter, M. Kappler, et al., Age-related values for serum selenium concentrations in infants and children, Clin. Chem. 48, 555–560 (2002).

    PubMed  CAS  Google Scholar 

  14. I. Lombeck, K. Kasperek, H. D. Harbisch, L. E. Feinendegen, and H. J. Bremer, The selenium state of healthy children, Eur. J. Pediatr. 125, 81–88 (1977).

    Article  PubMed  CAS  Google Scholar 

  15. D. C. Wilson, R. Tubman, N. Bell, H. L. Halliday, and D. McMaster, Plasma managanese, selenium, and glutathione peroxidase levels in the mother and newborn infant, Early Hum. Dev. 26, 223–226 (1991).

    Article  PubMed  CAS  Google Scholar 

  16. M. Oshiro, S. Mimura, M. Hayakawa, and K. Watanabe, Plasma and erythrocyte levels of trace elements and related antioxidant enzyme activities in low-birthweight infants during the early postnatal period, Acta Paediatr. 90, 1283–1287 (2001).

    Article  PubMed  CAS  Google Scholar 

  17. L. Daniels, R. Gibson, and K. Simmer, Selenium status of preterm infants: the effect of postnatal age and method of feeding, Acta Paediatr. 86, 281–288 (1997).

    PubMed  CAS  Google Scholar 

  18. K. B. Sluis, B. A. Darlow, P. M. George, N. Mogridge, B. A. Dolamore, and C. C. Winterbourn, Selenium and glutathione peroxidase levels in premature infants in a low selenium community (Christchurch, New Zealand), Pediatr. Res. 32, 189–194 (1992).

    Article  PubMed  CAS  Google Scholar 

  19. A. M. Smith, G. M. Chan, L. J. Moyer-Mileur, C. E. Johnson, and B. R. Gardner, Selenium status of preterm infants fed human milk, preterm formula, or selenium-supplemented preterm formula, J. Pediatr. 119, 429–33 (1991).

    Article  PubMed  CAS  Google Scholar 

  20. T. R. Tubman, H. L. Halliday, and D. McMaster, Glutathione peroxidase and selenium levels in the preterm infant, Biol. Neonate 58, 305–310 (1990).

    Article  PubMed  CAS  Google Scholar 

  21. B. A. Darlow, T. E. Inder, P. J. Graham, et al., The relationship, of selenium status to respiratory outcome in the very low birth weight infant, Pediatrics 96, 314–319 (1995).

    PubMed  CAS  Google Scholar 

  22. G. Lockitch, B. Jacobson, G. Quigley, P. Dison, and M. Pendray, Selenium deficiency in low birth weight neonates: an unrecognized problem, J. Pediatr. 114, 865–870 (1989).

    Article  PubMed  CAS  Google Scholar 

  23. H. S. Falciglia, J. R. Johnson, J. Sullivan, et al., Role of antioxidant nutrients and lipid peroxidation in premature infants with respiratory distress syndrome and bronchopulmonary dysplasia, Am. J. Perinatol. 20, 97–107 (2003).

    Article  PubMed  Google Scholar 

  24. B. A. Darlow, C. C. Winterbourn, T. E. Inder, et al., The effect of selenium supplementation on outcome in very low birth weight infants: a randomized controlled trial, J. Pediatr. 136, 473–480 (2000).

    Article  PubMed  CAS  Google Scholar 

  25. G. Bogye, G. Alfthan, and T. Machay, Randomized clinical trial of enteral yeast-selenium supplementation in preterm infants, BioFactors 8, 139–142 (1998).

    PubMed  CAS  Google Scholar 

  26. E. E. Tyrala, M. W. Borschel, and J. R. Jacobs, Selenate fortification of infant formulas improves the selenium status of preterm infants, Am. J. Clin. Nutr. 64, 860–865 (1996).

    PubMed  CAS  Google Scholar 

  27. T. P. McCarthy, B. Brodie, J. A. Milner, and R. F. Bevill, Improved method for selenium determination in biological samples by gas chromatography, J. Chromotogr. 225, 9–16 (1981).

    Article  CAS  Google Scholar 

  28. D. E. Paglia and W. N. Valentine, Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase, J. Lab Clin. Med. 70, 158–169 (1969).

    Google Scholar 

  29. O. G. Lowry, N. J. Rosebrough, A. L. Farr, and R. J. Randall, Protein measurement with the folin phenol reagent, J. Biol. Chem. 193, 265–275 (1951).

    PubMed  CAS  Google Scholar 

  30. D. L. Drabkin, The standardization of hemoglobin measurements, Am. J. Med. Sci. 217, 710–714 (1949).

    CAS  Google Scholar 

  31. L. A. Daniels, R. A. Gibson, and K. Simmer, Glutathione peroxidase is not a functional marker of selenium status in the neonatal period, J. Pediatr. Gastroenterol. Nutr. 26, 263–268 (1998).

    Article  PubMed  CAS  Google Scholar 

  32. J. K. Friel, W. L. Andrews, D. R. Long, and M. R. L'Abbe, Selenium status of very low birth weight infants, Pediatr. Res. 34, 293–296 (1993).

    Article  PubMed  CAS  Google Scholar 

  33. C. E. Casey, B. E. Guthrie, G. M. Friend, and M. F. Robinson, Selenium in human tissues from New Zealand, Arch. Environ. Health 37, 133–135 (1982).

    PubMed  CAS  Google Scholar 

  34. P. A. Bayliss, B. E. Buchanan, R. G. V. Hancock, and S. H. Zlotkin, Tissue selenium accretion in premature and full-term human infants and children, Biol. Trace Element Res. 7, 755–761 (1985).

    Google Scholar 

  35. L. Egreteau, J. Y. Pauchard, D. S. Semama, et al., Chronic oxygen dependency in infants born at less than 32 weeks gestation: incidence and risk factors, Pediatrics 108, e26-e30 (2001).

    Article  PubMed  CAS  Google Scholar 

  36. S. K. Krug, Parenteral nutrition: vitamins, minerals, and trace elements, in Nutritional Care for High Risk Newborns rev. 3rd ed., S. Groh-Wargo, M. Thompson, and J. Cox, eds., Precept, Chicago, IL (2000).

    Google Scholar 

  37. P. J. Aggett, Trace elements of the micropremie, Clin. Perinatol. 27, 119–129 (2000).

    Article  PubMed  CAS  Google Scholar 

  38. J. A. Butler, C. D. Thomson, P. D. Whanger, and M. F. Robinson, Selenium distribution in blood fractions of New Zealand women taking organic or inorganic selenium, Am. J. Clin. Nutr. 53, 748–754 (1991).

    PubMed  CAS  Google Scholar 

  39. Y. Xia, X. Zhao, L. Zhu, and P. D. Whanger, Long-term supplementation with selenate and selenomethionine: selenium and glutathione peroxidase in blood components of New Zealand women, Br. J. Nutr. 69, 577–588 (1993).

    Article  Google Scholar 

  40. J. Neve, Human selenium supplementation as assessed by changes in blood selenium concentration and glutathione peroxidase activity, J. Trace Elements Med. Biol. 9, 65–73. (1995).

    CAS  Google Scholar 

  41. H. E. Ganther and R. J. Kraus, Chemical stability of selenious acid in total parenteral nutrition solutions containing ascorbic acid, J. Parenteral Enteral, Nutr. 13, 185–188 (1989).

    CAS  Google Scholar 

  42. G. N. Schrauzer, The nutritional significance, metabolism, and toxicology of selenomethionine, Adv. Food Nutr. Res., 47, 73–112 (2003).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mentro, A.M., Smith, A.M. & Moyer-Mileur, L. Plasma and erythrocyte selenium and glutathione peroxidase activity in preterm infants at risk for bronchopulmonary dysplasia. Biol Trace Elem Res 106, 97–106 (2005). https://doi.org/10.1385/BTER:106:2:097

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/BTER:106:2:097

Index Entries

Navigation