Advertisement

Biological Trace Element Research

, Volume 104, Issue 2, pp 185–191 | Cite as

Effect of La(III) on the growth and aging of root of loquat plantlet in vitro

  • Hong Fashui
  • Song Weiping
  • Wan Zhigang
  • Yu Mingliang
  • Yu Jia
  • Liu Jiajia
  • Sheng Ye
  • Xi Qunhua
Original Articles

Abstract

The effect of lanthanum on the adventitious root growth, activities of superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD), O2 production rate, MDA content, and the relative plasma membrane permeability in roots of loquat test-tube plantlet were studied. Addition of lanthanum chloride (0.5 μmol/L) to the culture medium significantly increased the length of roots, increased the dry weight, enhanced the activities of SOD, CAT, and POD, decreased O2 production rate, malondialdehyde (MDA) contents, and the relative plasma membrane permeability. The relatively stable membrane structure of cell could defer the root aging of the plantlet in vitro. There are important theory meaning and practical value in applying LaCl3 in the rooting medium to raise the rate of rooting and transplant for wood plant.

Index Entries

Lanthanum loquat root antioxidant enzymes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. Das, A. Sharma, and G. Talukder, Effect of lanthanum in cellular systems, Biol. Trace Element Res. 18, 201–228 (1988).CrossRefGoogle Scholar
  2. 2.
    A. Kabata-Pendias and H. Pendias, Trace Element in Soils and Plants, 2nd ed., CRC, Boca Raton, FL, pp. 166–178 (1992).Google Scholar
  3. 3.
    T. J. Haley, Toxicity, in Handbook on the Physics and Chemistry of Rare Earths, K. A. Gschneidner and L. Eyring, eds., North-Holland, Amsterdam, vol. 15, pp. 553–585 (1979).Google Scholar
  4. 4.
    W. P. Song, F. S. Hong, and Z. G. Wan, Effects of lanthanum element on the rooting of loquat plantlet in vitro, Biol. Trace Element Res. 89, 277–285 (2002).CrossRefGoogle Scholar
  5. 5.
    W. P. Song, F. S. Hong, and Z. G. Wan, Effects of lanthanum and europium on the rooting of Eriobotya Japonica Lindl. plantlet in vitro, J. Chin. Rare Earth Soc. 20(6), 658–662 (2002).Google Scholar
  6. 6.
    W. P. Song, F. S. Hong, and Z. G. Wan, Effects of cerium on nitrogen metabolism of peach plantlet in vitro, Biol. Trace Element Res. 95(3), 259–268 (2003).CrossRefGoogle Scholar
  7. 7.
    F. S. Hong, Z. G. Wei, and G. W. Zhao, Effect of lanthanum on aged seed germination of rice, Biol. Trace Element Res. 75, 205–213 (2000).CrossRefGoogle Scholar
  8. 8.
    F. S. Hong, Study on the mechanism of cerium nitrate effects on germination of aged rice seed, Biol. Trace Element Res. 87, 191–200 (2002).CrossRefGoogle Scholar
  9. 9.
    C. N. Ginnopolitis and S. K. Rice, Superoxide dismutase purification and quantitative relationship with water soluble protein in seedling, Plant Physiol. 59, 315–318 (1977).CrossRefGoogle Scholar
  10. 10.
    T. K. Prasad, Role of catalase in inducing chilling tolerance in pre-emergent maize seedlings, Plant Physiol. 114, 1369–1376 (1997).PubMedGoogle Scholar
  11. 11.
    K. Wakamatsu and U. Tahama, Change in peroxidase activity and in peroxidase isozymes in carrot, Plant Physiol. 88, 167–177 (1993).CrossRefGoogle Scholar
  12. 12.
    E. F. Elstner and A. Heupel, Inhibition of nitrite formation from hydroxylammoniumchloide: a simple assay for superoxide dismutase, Anal. Biochem. 70, 616–620 (1979).CrossRefGoogle Scholar
  13. 13.
    R. L. Heath and L. Packer, Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation, Arch. Biochem. Biophys. 125, 189–198 (1968).PubMedCrossRefGoogle Scholar
  14. 14.
    O. H. Loowry, N. J. Rosebrough, A. L. Farr, and R. L. Randall, Protein measurement with the Folin phenol reagent, J. Biol. Chem. 193, 265–275 (1951).Google Scholar
  15. 15.
    F. L. Zeng, H. T. Zhang, and M. F. Zhang, The effect of La (III) on the peroxidation of membrane lipids in wheat seedling leaves under osmotic stress, Biol. Trace Element Res. 69, 141–150 (1999).Google Scholar
  16. 16.
    E. Vranova, D. Inze, and F. V. Breusegem, Signal transduction during oxidative stress, J. Exp. Bot. 53(372), 1227–1236 (2002).PubMedCrossRefGoogle Scholar
  17. 17.
    I. Fridovich, Superoxide dismutase, Adv. Enzymol. Related Areas Mol. Biol. 58, 61–97 (1986).CrossRefGoogle Scholar
  18. 18.
    J. Z. Ni, Rare Earth Bioinorganic Chemistry, Science Press, Beijing, pp. 13–37 (1995), (in Chinese)Google Scholar

Copyright information

© Humana Press Inc 2005

Authors and Affiliations

  • Hong Fashui
    • 1
  • Song Weiping
    • 1
  • Wan Zhigang
    • 1
  • Yu Mingliang
    • 2
  • Yu Jia
    • 1
  • Liu Jiajia
    • 1
  • Sheng Ye
    • 1
  • Xi Qunhua
    • 1
  1. 1.Life Sciences CollegeSuzhou UniversitySuzhouPeople’s Repubilic of China
  2. 2.Agriculture Academy of Jiangsu ProvinceNanjingPeople’s Republic of China

Personalised recommendations