Skip to main content
Log in

Do trace elements modify the activity of erythrocyte sodium-proton exchanger in hemodialyzed patients?

  • Original Articles
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The kinetics (V max and K m ) of the erythrocyte Na+−H+ exchanger was studied in a group of 21 patients undergoing regular hemodialysis (HD) and in 21 control subjects. The activity of antioxidative enzymes—superoxide dismutase and glutathione peroxidase—as well as the concentrations of their cofactors—zinc, copper, and selenium—in plasma and in erythrocytes were determined. The thiobarbituric acid-reactive substances (TBARS) concentration served as an indicator of oxidative stress intensity in plasma and erythrocytes. It was found that in the control group the concentration of copper in erythrocytes was positively correlated with K m and V max. When the concentration of copper increased, the shape of the kinetic curve changed from sigmoidal to hyperbolic. In the control group, the concentration of zinc in erythrocytes also correlated with K m . However, the results obtained for the group of hemodialyzed patients were the opposite: when the erythrocyte concentration of copper increased, a K m decline was observed and the shape of the curve changed from hyperbolic to sigmoidal. In the group of hemodialyzed patients, we also found a positive correlation between K m and the concentration of selenium in erythrocytes, and a negative correlation between K m and erythrocyte TBARS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Avkiran, Protection of the ischaemic myocardium by Na+/H+ exchange inhibitors: potential mechanisms of action Basic Res. Cardiol. 96, 306–311 (2001).

    Article  PubMed  CAS  Google Scholar 

  2. M. Karmazyn, Role of sodium-hydrogen exchange in cardiac hypertrophy and heart failure: a novel and promising therapeutic target. Basic Res. Cardiol. 96, 325–328 (2001).

    Article  PubMed  CAS  Google Scholar 

  3. E. Matteucci, V. Di Bello, and O. Giampietro, Integrated analysis of erythrocyte Na+/H+ antiport activity and left ventricular nyocardial function in type I insulin-dependent diabetes mellitus, J. Diabetes Complic. 9, 208–211 (1995).

    Article  CAS  Google Scholar 

  4. M. Toborek, T. Wasik, M. Drozd, M. Klin, K. Magner-Wrobel, and E. Kopieczna-Grzebieniak Effect of hemodialysis on lipid peroxidation and antioxidatant system in patients with chronic renal failure, Metabolism 41, 1229–1232 (1992).

    Article  PubMed  CAS  Google Scholar 

  5. M. Cutaia and N. Parks, Oxidant stress decreased Na+/H+ antiport activity in bovine pulmonary artery endothelial cells. Am. J. Physiol. 267, L649-L659 (1994).

    PubMed  CAS  Google Scholar 

  6. Q. Hu, Y. Xia, S. Corda, J.-L. Zweier, and R-C. Ziegelstein Hydrogen peroxidase decreased pHi in human aortic endothelial cells by inhibiting Na+/H+ exchange, Circ. Res. 83, 644–651 (1998).

    PubMed  CAS  Google Scholar 

  7. R. Daskalopulos, J. Korcok, P. Farhangkhgoee, M. Karmazyn, A-W. Gelb, and J-X. Wilson, Propofol protection of sodium-hydrogen exchange activity sustains glutamate uptake during oxidative stress, Anesth. Analg. 93, 1199–1204 (2001).

    Article  Google Scholar 

  8. E. Matteucci and O. Giampietro. Oxidative stress in families of type 1 diabetic patients, Diabet. Care 24, 167–168 (2001).

    Article  CAS  Google Scholar 

  9. A. Y. Bogdanova, L. V. Virkki, G. P. Gusev, and M. Nikinmaa, Copper effects on ion transport across lamprey erythrocyte membrane: Cl(−)/OH(−) exchange induced by cuprous ions. Toxicol. Appl. Pharmacol. 159, 204–131 (1999).

    Article  PubMed  CAS  Google Scholar 

  10. A. Y. Bogdanova, M. Gassman, and M. Nikinmaa, Copper ion redox state, is critical for its effects on ion transport pathways and methaemoglobin formation in trout erythrocyte. Chem. Biol. Ineract. 139, 43–59 (2002).

    Article  CAS  Google Scholar 

  11. C. E. Poli-de-Figueiredo, L. L. Ng, M. C. Garrido, J. E. Davies, J. C. Ellory, and B. M. Hendry, Leukocyte intracellular pH and Na/H antiporter activity in uraemia and type I diabetes mellitus, Nephrol. Dial. Transplant. 6, 615–620 (1991).

    PubMed  CAS  Google Scholar 

  12. D. B. Corry, M. L. Tuck, S. Nicholas, and E. J. Weinman, Increased Na/H antiport activity and abundance in uremic red blood cells, Kidney Int. 44, 574–578 (1993).

    Article  PubMed  CAS  Google Scholar 

  13. H. Kovacic, P. Gallice, P. Brunet, Y. Berland, and A. Crevat, Sodium pump and Na+/H+ activities in uremic erythrocytes. A microcalorimetric and pH-metric study. Clin. Chim. Acta 259, 31–40 (1997).

    Article  PubMed  CAS  Google Scholar 

  14. S. N. Orlov, I. Y. Postnov, N. I. Pokudin, V. Y. Kukharenko, and Y. V. Postnov, Na+−H+ exchange and other ion-transport systems in erythrocytes of essential hypertensives and spontaneously hypertensive rats: a comparative analysis. J. Hypertens. 7, 781–788 (1989).

    Article  PubMed  CAS  Google Scholar 

  15. R. J. Leatherbarrow, Enzfitter, a non-linear regression data analysis program for the IBM PC. Biosoft 2002, Cambridge, Great Britain.

  16. M. Canessa, Kinetic properties of Na+/H+ exchange and Li+/Na+, Na+/Na+, and Na+/Li+ exchanges of human red cells, Methods Enzymol. 173, 176–191 (1989).

    Article  PubMed  CAS  Google Scholar 

  17. A. Danch and M. Drozdz, Simply methods of fluorimetric determination of selenium in biologicals samples, Diagn. Lab. 32, 529–534 (1996) (in Polish).

    Google Scholar 

  18. H. P. Misra and I. Fridovich, The role of superoxide anion in the autooxidation of epinephrune and a simple assay for supeoxide dismutase. J. Biol. Chem. 247, 3170–3175 (1972).

    PubMed  CAS  Google Scholar 

  19. A. Wendel, Glutathione peroxidase, Methods Enzymol 77, 325–333 (1981).

    PubMed  CAS  Google Scholar 

  20. W. Wasowicz, J. Neve, and A. Peretz, Optimized steps in fluorometric determination of thiobarbituric acid-reactive substances in serum: importance of extraction pH and influence of sample preservation and storage, Clin Chem. 39, 2522–2526 (1993).

    PubMed  CAS  Google Scholar 

  21. M. Toborek, T. Wasik, M. Drozdz, M. Klin, K. Magner-Wrobel, and E. Kopieczna-Grzebieniak, Effect of hemodialysis on lipid peroxidation and antioxidatant system in patients with chronic renal failure, Metabolism 41, 1229–1232 (1992).

    Article  PubMed  CAS  Google Scholar 

  22. M. J. Richard, J. Arnaud, C. Jurkovitz, et al., Trace elements and lipid peroxidation abnormalities in patients with chronic renal failure, Nephron 57, 10–15 (1991).

    Article  PubMed  CAS  Google Scholar 

  23. M. Luciak and K. Trznadel, Free radical species metabolism during haemodialysis with different membranes, Nephrol. Dial. Transplant. 3(Suppl.), 66–70 (1991).

    Google Scholar 

  24. C. K. Chen, J. M. Llaw, J. G. Juang, and T. H. Lin, Antioxidant enzymes and trace element in hemodialyzed patients, Biol. Trace Element Res. 58, 149–157 (1997).

    CAS  Google Scholar 

  25. P. C. D’Haese and M. E. De Broe, Adequacy of dialysis: trace elements in dialysis fluids, Nephrol. Dial. Transplant. 11(Suppl. 2), 92–97 (1996).

    PubMed  Google Scholar 

  26. T. H. Lin, J. G. Chen, J. M. Liaw, and J. G. Juang, Trace elements and lipid peroxidation in uremic patients on hemodialysis. Biol. Trace Element Res. 51, 277–283 (1996).

    CAS  Google Scholar 

  27. A. Soejima, N. Matsuzawa, N. Miyake, et al. Hypoalbuminemia accelerates erythrocyte membrane lipid peroxidation in chronic hemodialysis patients, Clin. Nephrol. 51, 92–97 (1999).

    PubMed  CAS  Google Scholar 

  28. D. A. Clopton and P. Saltman, Copper-specific damage in human erythrocytes exposed to oxidative stress, Biol. Trace Element Res. 56, 231–240 (1997).

    CAS  Google Scholar 

  29. M. Canessa, K. Morgan, R. Goldszer, T. J. Moore, and A. Spalvins, Kinetics abnormalities of the red blood cell sodium-proton exchange in hypertensive patients. Hypertension 17, 340–348 (1991).

    PubMed  CAS  Google Scholar 

  30. G. Ceolotto, P. Conlin, G. Clari, A. Semplicini, and M. Canessa, Protein kinase C and insulin regulation of red blood cell Na+/H+ exchange, Am. J. Physiol. 272, C818-C826. (1997)

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bober, J., Kwiatkowska, E., Ciechanowski, K. et al. Do trace elements modify the activity of erythrocyte sodium-proton exchanger in hemodialyzed patients?. Biol Trace Elem Res 104, 107–120 (2005). https://doi.org/10.1385/BTER:104:2:107

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/BTER:104:2:107

Index Entries

Navigation