Skip to main content
Log in

Characterization of hypoglycemiant plants by total reflection X-ray fluorescence spectrometry

  • Original Articles
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

In this work, synchrotron radiation total reflection X-ray fluorescence spectrometry (SRTXRF) was used to determine trace elements in eight hypoglycemiant plants (Trigonella foenum graecum, Panax ginseng, Pfaffia paniculata, Myrcia speciosa, Zea mays, Harpagophytum procumbens, Syzygium jambolona, and Bauhinia forficate). The elements P, K, Ca, Ti, Mn, Fe, Cu, Zn, Rb, and Sr were detected in all medicinal plants investigated, whereas Si, S, Sc, V, Cr, Co, Ni, Se, Nb, Mo, Sn, Sb, Ba, Hg, and Pb were detected only in some of the samples. The concentration of elements in hypoglycemiant plants varied from 0.15 μg/g of Co to 3.0×104 μg/g of K and the mean of experimental limit of detection for these elements were 0.14 and 3.6 μg/g, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. D. Kruse-Jarres and R. Rükgauer, Trace elements in diabetes mellitus. Peculiarities and clinical validity of determinations in blood cells, J. Trace Elements Med. Biol. 14, 21–27 (2000).

    Article  CAS  Google Scholar 

  2. A. M. Rauscher, S. J. Fairweather-Tait, P. D. Wilson, S. Gorrick, and R. Greenwoos, Zinc metabolism in non-insulin dependent diabetes mellitus, J. Trace Elements Med. Biol. 11, 65–70 (1997).

    CAS  Google Scholar 

  3. C. Terres-Martos, M. Navarro-Alarcon, F. Martin-Lagos, H. L. Serrana, O. V. Perez-Valer, and M. C. Lopez-Martinez, Serum zinc and copper concentrations and Cu/Zn ratios in patients with hepatopathies or diabetes, J. Trace Elements Med. Biol. 12, 44–49 (1998).

    CAS  Google Scholar 

  4. A. B. Chausmer, Zinc, insulin and diabetes, J. Am. Coll. Nutr. 17, 109–115 (1998).

    PubMed  CAS  Google Scholar 

  5. B. W. Morris, S. Macneil, K. Stanley, T. A. Gray, and R. Fraser, The interrelationship between insulin and chromium in hiperinsulinemic euglycaemic clamps in healthy volunteers, J. Endocrinol. 139, 339–345 (1993).

    Article  PubMed  CAS  Google Scholar 

  6. R. A. Anderson, Nutritional factors influencing the glucose/insulin system: chromium, J. Am. Coll. Nutr. 16, 404–410 (1997).

    PubMed  CAS  Google Scholar 

  7. R. A. Anderson, N. Cheng, N. A. Bryden, et al., Elevated intakes of supplemental chromium improve glucose and insulin variables in individual with type 2 diabetes, Diabetes 46, 1786–1791 (1997).

    Article  PubMed  CAS  Google Scholar 

  8. K. Schwarz and W. Mertz, Chromium (III) and the glucose tolerance factor, Arch. Biochem. Biophys. 85, 292–295 (1959).

    Article  PubMed  CAS  Google Scholar 

  9. J. T. Xie, S. R. Mehendale, A. Wang, et al., American ginseng leaf: ginsenoside analysis and hypoglycemic activity, Pharmacol. Res. 49, 113–117 (2004).

    Article  PubMed  CAS  Google Scholar 

  10. L. A. Curie, Limits for qualitative detection and quantitative determination, Anal. Chim. 40, 586–593 (1968).

    Article  Google Scholar 

  11. A. S. Botsaris, Fitoterapia Chinesa e Plantas Brasileiras, Icone, São Paulo (1995).

    Google Scholar 

  12. A. AB. Majid, S. Sarmani, N.I. Yusoff, Y. K. Wei, and F. Hamzah, Trace elements in Malaysian medicinal plants, J. Radional. Nucl. Chem. 195, 173–183 (1995).

    Article  CAS  Google Scholar 

  13. R. D. Sharma, A. Sarkar, D. K. Hazra, et al., Use of fenugreek seed powder in the management of non-insulin dependent diabetes mellitus, Nutr. Res. 16, 1331–1339 (1996).

    Article  Google Scholar 

  14. Y. Han, S. Nishibe, Y. Noguchi, and Z. Jin, Flavonol glycosides from the stems of Trigonella foenum-graecum, Phytochemistry 58, 577–580 (2001).

    Article  PubMed  CAS  Google Scholar 

  15. ANVISA—Agência Nacional de Vigilância Sanitária (1999), Informações sobre a Agência Nacional de Vigilância Sanitária (ANVISA) e medicamento genérico. Disponível em http://www.anvisa.gov.br (Acesso em 20 de fevereiro de 2003).

  16. O. A. Fakankun, E. A. Oluyemi, and O. A. Akanle, Neutron activation analysis of ashes of some medicinally used tropical woods, J. Radioanal. Nucl. Chem. 169, 277–282 (1993).

    Article  CAS  Google Scholar 

  17. S. M. Vaz, M. Saiki, M. B. A. Vasconcellos, and J. A. A. Sertié, Neutron activation analysis of medicinal plant extracts, J. Radional. Nucl. Chem. 195, 185–193 (1995).

    Article  CAS  Google Scholar 

  18. M. M. Castiñeira, R. Brandt, and A. von Bohlen, Development of procedure for the multi-element determination of trace elements in wine by ICP-MS, Fresenius J. Anal. Chem. 370, 353–558 (2001).

    Google Scholar 

  19. Á. Kelkó-Lévai, I. Varga, K. Zih-Perényi and A. Lásztity, Determination of trace elements in pharmaceutical substances by graphite furnace atomic absorption spectrometry and total reflection X-ray fluorescence after flow injection ion-exchange preconcentration, Spectrochim. Acta B 54, 827–833 (1999).

    Article  Google Scholar 

  20. S. M. Simabuco, C. Vázquez, S. Boeykens, and R.C. Barroso, Total reflection by synchrotron radiation: trace determination in nuclear materials, X-ray Spectrom. 31, 167–172 (2002).

    Article  CAS  Google Scholar 

  21. E. Matsumoto, S. M. Simabuco, C. A. Pérez, and V. F. Nascimento Filho, Atmospheric particulate analysis by synchrotron radiation total reflection (SR-TXRF), X-ray Spectrom. 31, 136–140 (2002).

    Article  CAS  Google Scholar 

  22. E. F. O. De Jesus, S. M. Simabuco, M. J. Dos Anjos, and R. T. Lopes, Synchrotron radiation X-ray fluorescence analysis of trace elements in Nerium oleander for pollution, Spectrochim. Acta B 55, 1181–1187 (2000).

    Article  Google Scholar 

  23. L. Benninhoff, D. von Czarnowski, E. Denkhaus, and K. Lemke, Application of chemometrics for diagnostic cancer recognition, Spectrochim. Acta B 52, 1039–1046 (1997).

    Article  Google Scholar 

  24. D. von Czarnowski, E. Denkhaus, and K. Lemke, Determination of trace element distribution in cancerous and normal human tissues by total reflection X-ray fluorescence analysis, Spectrochim. Acta B 52, 1047–1052 (1997).

    Article  Google Scholar 

  25. M. J. Salvador, G. N. Lopes, V. F. Nascimento Fillho, and O. L. A. D. Zucchi, Quality control of commercial tea by X-ray fluorescence, X-ray Spectrom. 31, 141–144 (2002).

    Article  CAS  Google Scholar 

  26. O. L. A. D. Zucchi, V. F. Nascimento Filho, and H. Salvio Neto, Application of X-ray fluorescence to determination of metals in commercial tablets containing digoxin, J. Trace Microprobe Tech. 20, 141–149 (2002).

    Article  CAS  Google Scholar 

  27. C. A. Pérez, M. Radtke, H. J. Sánchez, et al., Synchrotron radiation X-ray fluorescence at the LNLS: beamline instrumentation and experiments, X-ray Spectrom. 28, 320–326 (1999).

    Article  Google Scholar 

  28. A. F. Ward, L. F., Marciello, L. Carrara, and V. J. Luciano, Simultaneous determination of major, minor and trace elements in agricultural and biological samples by coupled argon and plasma spectrometry, Spectrosc. Lett. 13, 803–831 (1980).

    CAS  Google Scholar 

  29. M. J. Salvador, D. A. Dias, S. Moreira, and O. L. A. Zucchi, Analysis of medicinal plants and crude extracts by synchrotron radiation total reflection X-ray fluorescence, J. Trace Microprobe Tech. 21, 377–388 (2003).

    Article  CAS  Google Scholar 

  30. R. Klockemkämper and A. von Bohlen, Elemental analysis of environmental samples by total reflection fluorescence: a review, X-ray Spectrom. 25, 156–162 (1996).

    Article  Google Scholar 

  31. G. W. Snedecor, Statistical Methods, Iowa State College Press, Ames (1956).

    Google Scholar 

  32. M. Teske and A. M. M. Trentini, Compêndio de Fitoterapia, Herbarium, Curitiba (1995).

    Google Scholar 

  33. A. Zivyat, A. Legssyer, H. Mekhfi, A. Dassouli, M. Serhrouchni, and W. Benjelloun, Phytototherapy of hypertension and diabetes in oriental Morocco, J. Ethnopharmacol. 58, 45–54 (1997).

    Article  Google Scholar 

  34. G. G. F. Nascimento, J. Locatelli, P. C. Freitas, and G. L. Silva, Antibacterial activity of plant extracts and phytochemical on antibiotic-resistant bacteria, Braz. J. Microbiol. 31, 247–256 (2000).

    Google Scholar 

  35. R. D. Sharma, Effect of fenugreek seeds and leaves on blood glucose and serum insulin responses in human subjects, Nutr. Res. 6, 1353–1364 (1966).

    Article  Google Scholar 

  36. J. S. G. Reid and H. Meier, Formation of reserve galactomannans in the seeds of Trigonella foenum graecum, Phytochemistry 9, 513–520 (1970).

    Article  CAS  Google Scholar 

  37. S. Reiser, Effect of dietary fibre on the parameters of glucose tolerance in humans, in Dietary Fibres: Chemistry and Nutrition, Inglett G. F., and Falkehag S. I., eds., Academic, New York, pp. 173–191 (1979).

    Google Scholar 

  38. O. Faruque, R. B. Bethe, J. M. A. Hannan, et al., Inhibition of rat disaccharidase by an antihyperglycemic plant extract, Diabetologia 41, A237 (1998).

    Article  Google Scholar 

  39. J. R. Sorenson, L. S. Soderberg, M. V. Chidambaram, et al., Bioavailable copper complexes after a physiologic approach to treatment to chronic diseases, Adv. Exp. Med. Biol. 258, 229–234 (1989).

    PubMed  CAS  Google Scholar 

  40. F. Ursini, M. Maiorino, and C. Gregolin, The selenoenzyme phospholipid hydroperoxide glutathione-peroxidase, Biochim. Biophys. Acta 839, 62–70 (1985).

    PubMed  CAS  Google Scholar 

  41. H. S. Marinho, F. Antunes, and R. E. Pinto, Role of glutathione peroxidase and phospholipid hydroperoxide glutathione peroxidase in the reduction of lysophospholipid hydroperoxides, Free Radical Biol. Med. 22, 871–883 (1997).

    Article  CAS  Google Scholar 

  42. H. Sies, Strategies of antioxidant defense, Eur. J. Biochem. 215, 213–219 (1993).

    Article  PubMed  CAS  Google Scholar 

  43. K. S. Chen, C. L. Tseng, and T. H. Lin, Trace elements in natural drugs determined by INAA, J. Radioanal. Nucl. Chem. 170, 265–280 (1993).

    Article  CAS  Google Scholar 

  44. P. L. Fernandez-Cáceres, M. J. Martín, F. Pablos, and A. G. González, Differentiation of tea (Camelia sinensis) varieties and their geographical origin according to their metal content, J. Agric. Food. Chem. 49, 4775–4779 (2001).

    Article  PubMed  CAS  Google Scholar 

  45. C. D. Klaassen, Metais pesados e antagonistas de metais pesados, in As Bases Farmacológicas da Terapêutica, J. G. Hardman et al., eds., (ed). McGraw-Hill, Rio de Janeiro, pp. 1223–1239 (1996).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Orghêda L. A. D. Zucchi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zucchi, O.L.A.D., Moreira, S., de Jesus, E.F.O. et al. Characterization of hypoglycemiant plants by total reflection X-ray fluorescence spectrometry. Biol Trace Elem Res 103, 277–290 (2005). https://doi.org/10.1385/BTER:103:3:277

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/BTER:103:3:277

Index Entries

Navigation