Skip to main content

Effects of a combination of niacin and chromium(III)-chloride on the skin and lungs of hyperlipemic rats

Abstract

The aim of this study was to investigate the biochemical effects of niacin and chromium(III)-chloride on serum lipid peroxidation, uric and sialic acids, and the extent of lipid peroxidation and glutathione levels in skin and lung tissues of hyperlipidemic rats.

In this study, female Swiss albino rats, 12 mo old, were used. They were randomly divided into four groups. Group I animals were fed with a standard pellet diet and water ad libitium. Group II rats were fed with a standard pellet diet and were treated with a dose of 250 μg/kg body weight CrCI3·6H2O and 100 mg/kg body weight niacin, for 45 d, by the gavage technique. Group III rats were fed a lipogenic diet in which 2% cholesterol, 0.5% cholic acid, and 20% sunflower oil were added to the pellet chow. In addition, the animals in this group drank water containing 3% ethanol. This regime was maintained for 60 d. The rats in group IV were maintained in the same food and drink regime as the animals in group III. After 2 wk, the animals showed symptoms of hyperlipemia and they were treated with 250 μg/kg body weight CrCI3·6H2O and 100 mg/kg body weight niacin, by gavage, for 45 d. On d 60, the blood and the skin and lungs samples were taken from animals.

In the hyperlipemic groups, a reduction of the lung glutathione level and an increase in serum, lung, and skin lipid peroxidation levels and in serum sialic and uric acid were observed. In rats treated with a combination of niacin and Cr(III), the skin and serum lipid peroxidation and the sialic and uric acid levels decreased while showing an increase of lung glutathione activity. These results suggest that niacin and Cr(III), when administered in combination, have a protective effect against skin and lung tissues damage as a result of hyperlipidemia.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    A. Onat, Risk factors and cardiovascular disease in Turkey, Atherosclerosis 156, 1–10 (2001).

    PubMed  Article  CAS  Google Scholar 

  2. 2.

    D. Kromhout, Diet and cardiovascular diseases, J. Nutr. Health Aging 5, 144–149 (2001).

    PubMed  CAS  Google Scholar 

  3. 3.

    S. K. Wattanapitayakul and J. A. Bauer, Oxidative pathways in cardiovascular disease roles, mechanisms and therapeutic implications, Pharmacol. Ther. Pharmacol. 89, 187–206 (2001).

    Article  CAS  Google Scholar 

  4. 4.

    H. Esterbauer, G. Wag, and H. Puhl, Lipid peroxidation and its role in atherosclerosis, Br. Med. Bull. 49, 566–576 (1993).

    PubMed  CAS  Google Scholar 

  5. 5.

    J. P. De La Cruz, L. Quintero, M. A. Villalobos, and F. S. De La Cuesta, Lipid peroxidation and glutathione system in hyperlipemic rabbits: influence of olive oil administration, Biochim. Biophys. Acta 1485, 36–44 (2000).

    Google Scholar 

  6. 6.

    S. Kajanachumpol, et al., Plasma lipid peroxide and antioxidant levels in diabetic patients, J. Med. Assoc. Thal. 80, 372–377 (1999).

    Google Scholar 

  7. 7.

    B. Halliwel, Drug antioxidant effects, Drugs 42, 569–605 (1991).

    Google Scholar 

  8. 8.

    J. Loeper, J. Goy, L. Rosensztajn, O. Bedu, and P. Moisson, Lipid peroxidation and protective enzymes during myocardial infarction, Clin. Chim. Acta 196, 119–126 (1991).

    PubMed  Article  CAS  Google Scholar 

  9. 9.

    D. M. Colquhoun, Nutraceuticals: vitamins and other nutrients in coronary heart disease, Curr. Opin. Lipidol. 12, 639–646 (2001).

    PubMed  Article  CAS  Google Scholar 

  10. 10.

    S. B. Lall, S. Bhoopendra, K. Gulati, and S. D. Seth, Role of nutrition in toxic injury, Indian J. Exp. Biol. 37, 109–116 (1999).

    PubMed  CAS  Google Scholar 

  11. 11.

    L. Raij, J. Nagy, K. Coffee, and E. G. DeMaster, Hypercholesterolemia promotes endothelial dysfunction in vitamin E- and selenium-deficient rats, Hypertension 22, 56–61 (1993).

    PubMed  CAS  Google Scholar 

  12. 12.

    S. S. Melo, M. R. Arantes, M. S. Meirelles, A. A. Jordao, and H. Vannuchi, Lipid peroxidation in nicotinamide-deficient and nicotinamide-supplemented rats with streptozotocin-induced diabetes, Acta Diabetol. 37, 33–39 (2000).

    PubMed  Article  CAS  Google Scholar 

  13. 13.

    R. A. Anderson, N. A. Bryden, and M. M. Polansky, Lack of toxicity of chromium chloride and chromium picolinate in rats, J. Am. Coll. Nutr. 16, 273–279 (1997).

    PubMed  CAS  Google Scholar 

  14. 14.

    M. Simonoff, Chromium deficiency and cardiovascular risk, Cardiovasc. Res. 18, 591–596 (1984).

    PubMed  CAS  Google Scholar 

  15. 15.

    T. Zima, O. Mestek, V. Tesar, et al., Chromium levels in patients with internal diseases, Biochem. Mol. Biol. Int. 46, 365–374 (1998).

    PubMed  CAS  Google Scholar 

  16. 16.

    H. L. Figge, J. Figge, P. M. Souney, A. H. Mutnick, and F. Sacks, Nicotinic acid: a review of its clinical use in the treatment of lipid disorders, Pharmacotherapy 8, 287–294 (1988).

    PubMed  CAS  Google Scholar 

  17. 17.

    J. R. Dipalma and W. S. Thayer, Use of niacin as a drug, Annu. Rev. Nutr. 11, 169–187 (1991).

    PubMed  Article  CAS  Google Scholar 

  18. 18.

    A. C. Goldberg, Clinical trial experience with extended-release niacin (Niaspan): doseescalation study, Am. J. Cardiol. 82, 35–38 (1998).

    Article  Google Scholar 

  19. 19.

    D. M. Capuzzi, J. M. Morgan, A. O. Brusco, and C. M. Intenzo, Niacin dosing: relationship to benefits and adverse effects, Curr. Atherosclerosis Rep. 2, 64–71 (2000).

    CAS  Google Scholar 

  20. 20.

    A. Blazovics, J. Feher, E. Feher, A. K. Petri, and G. Petri, Liver protecting and lipid lowering effects of Sempervivum tectorum extract in the rat, Phytother. Res. 7, 98–100 (1993).

    Article  Google Scholar 

  21. 21.

    J. Ledwozyw, J. Michalak, A. Stepien, and A. Kadziolka, The relationship plasma triglycerides, cholesterol, total lipids and lipid peroxidation products during human atherosclerosis, Clin. Chim. Acta 155, 275–284 (1986).

    PubMed  Article  CAS  Google Scholar 

  22. 22.

    K. Yagi, Assay for blood plasma or serum, Methods Enzymol. 105, 328–337 (1984).

    PubMed  CAS  Google Scholar 

  23. 23.

    E. Beutler, Glutathione, in Red Cell Metabolism: A Manual of Biochemical Methods, 2nd ed., Grune and Stratton, New York, pp. 112–114 (1975).

    Google Scholar 

  24. 24.

    H. O. Lowry, J. N. Rosebrough, A. L. Farr, and J. R. Randall, Protein measurement with the folin phenol reagent, J. Biol. Chem. 193, 265–275 (1951).

    PubMed  CAS  Google Scholar 

  25. 25.

    K. Lorentz, T. Weiss, and E. Kraas, Sialic acid in human serum and cerebrospinal fluid, comparison of methods and references value, Clin. Chem. Clin. Biochem. 24, 189–198 (1986).

    CAS  Google Scholar 

  26. 26.

    W. T. Caraway, Determination of uric acid in serum by a carbonate method, Am. J. Clin. Pathol. 25, 840–845 (1955).

    PubMed  CAS  Google Scholar 

  27. 27.

    J. L. Hintze, Copyright C, 865, East 400, North Kaysville, Utah, 84037, (801), 546–0445, (1986).

  28. 28.

    M. F. Maggi-Capeyron, J. Cases, E. Badia, et al., A diet high in cholesterol and deficient in vitamin E induces lipid peroxidation but does not enhance antioxidant enzyme expression in rat liver, J. Nutr. Biochem. 13, 296–301 (2002).

    PubMed  Article  CAS  Google Scholar 

  29. 29.

    R. I. Press, J. Geller, and G. W. Evans, The effect of chromium picolinate on serum cholesterol and apolipoprotein fractions in human subjects, West. J. Med. 152, 41–45 (1990).

    PubMed  CAS  Google Scholar 

  30. 30.

    L. Gate, J. Paul, G. N. Ba, K. D. Tew, and H. Tapiero, Oxidative stress induced in pathologies: the role of antioxidants, Biomed. Pharmacother. 53, 169–180 (1999).

    PubMed  Article  CAS  Google Scholar 

  31. 31.

    Y. Z. Fang, S. Yang, and G. Wu, Free radicals, antioxidants and nutrition, Nutr. 18, 872–879 (2002).

    Article  CAS  Google Scholar 

  32. 32.

    R. Kohen, Skin antioxidants: their role in aging and in oxidative stress—new approaches for their evaluation, Biomed. Pharmacother. 53, 181–192 (1999).

    PubMed  Article  CAS  Google Scholar 

  33. 33.

    R. A. Kozar, C. J. Weibel, J. Cipolla, et al., Antioxidant enzymes are induced during recovery from acute lung injury, Crit. Care Med. 28, 2486–2491 (2000).

    PubMed  Article  CAS  Google Scholar 

  34. 34.

    K. Kedziora Kornatowska, S. Szram, T. Kornatowski, et al., The effect of verapamil on the antioxidant defence system in diabetic kidney, Clin. Chim. Acta 322, 105–112 (2002).

    PubMed  Article  CAS  Google Scholar 

  35. 35.

    M. Hoyos, J. M. Guerrero, R. Perez Cano, et al., Serum cholesterol and lipid peroxidation are decreased by melatonin in diet-induced hypercholesterolemic rats, J. Pineal Res. 28, 150–155 (2000).

    PubMed  CAS  Article  Google Scholar 

  36. 36.

    F. J. Kelly, Glutathione in defence of the lung, Food Chem. Toxicol. 37, 963–966 (1999).

    PubMed  Article  CAS  Google Scholar 

  37. 37.

    I. Seghrouchni, J. Drai, E. Bannier, et al., Oxidative stress parameters in type I, type II and insulin-treated type 2 diabetes mellitus; insulin treatment efficiency, Clin. Chim. Acta 321, 89–96 (2002).

    PubMed  Article  CAS  Google Scholar 

  38. 38.

    S. H. Ganji, V. S. Kamanna, and M. L. Kashyap, Niacin and cholesterol: role in cardiovascular disease. [review], J. Nutr. Biochem. 14, 298–305 (2003).

    PubMed  Article  CAS  Google Scholar 

  39. 39.

    M. H. Davidson, Niacin: a powerful adjunct to other lipid-lowering drugs in reducing plaque progression and acute coronary events, Curr. Atherosclerosis Rep. 5, 418–422 (2003).

    Google Scholar 

  40. 40.

    D. R. Illingworth, E. A. Stein, Y. B. Mitchel, et al., Comparative effects of lovastatin and niacin in primary hypercholesterolemia a prospective trial, Arch. Intern. Med. 154, 1586–1595 (1994).

    Article  Google Scholar 

  41. 41.

    P. Evans and B. Halliwell, Micronutrients: oxidant/antioxidant status, Br. J. Nutr. 85, 67–74 (2001).

    Article  Google Scholar 

  42. 42.

    Y. Fang, S. Yang, and G. Wu, Free radicals, antioxidants, and nutrition, Nutrition 18, 872–879 (2002).

    PubMed  Article  CAS  Google Scholar 

  43. 43.

    S. Davies, J. Howard, and A. Hunnisett, Age-related decreases in chromium levels in 51,665 hair, sweat and serum samples from 40,872 patients-implications for the prevention of cardiovascular disease and type II diabetes mellitus, Metabolism 46, 469–473 (1997).

    PubMed  Article  CAS  Google Scholar 

  44. 44.

    S. Ueno, N. Susa, Y. Furukawa, et al., Effects of chromium in lipid peroxidation in isolated hepatocytes, Jpn. J. Sci. 50, 45–52 (1998).

    Google Scholar 

  45. 45.

    H. G. Preuss, S. T. Jarrell, R. Scheckenbach, S. Lieberman, and R. A. Anderson, Comparative effects of chromium, vanadium and gymnema sylvestre on sugar-induced blood pressure elevations in SHR, J. Am. Coll. Nutr. 17, 116–123 (1998).

    PubMed  CAS  Google Scholar 

  46. 46.

    R. A. Anderson, A. Roussel, N. Zouari, S. Mahjoub, J. Matheau, and A. Kerkeni, Potential antioxidant effects of zinc and chromium supplementation in people with type 2 diabetes mellitus, J. Am. Coll. Nutr. 20, 212–218 (2001).

    PubMed  CAS  Google Scholar 

  47. 47.

    M. Onderci, N. Sahin, K. Sahin, and N. Kiliç, Antioxidant properties of chromium and zinc: in vivo effects on digestibility, lipid peroxidation, antioxidant vitamins, and some minerals under a low ambient temperature, Biol. Trace Element Res. 92, 139–150 (2003).

    Article  CAS  Google Scholar 

  48. 48.

    H. H. Cheng, M. H. Lai, W. C. Hou, and C. L. Huang, Antioxidant effects of chromium supplementation with type 2 diabetes mellitus and euglycemic subjects, J. Agric. Food Chem. 52, 1385–1389 (2004).

    PubMed  CAS  Google Scholar 

  49. 49.

    M. Tezuka, S. Ishii, and S. Okada, Chromium(III) decreases carbon tetrachloride originated trichloromethyl radical in mice, Biochemistry 44, 261–265 (1991).

    CAS  Google Scholar 

  50. 50.

    Y. Ohara, T. E. Peterson, and D. G. Harison, Hypercholesterolemia increases endothelial superoxide anion production, J. Clin. Invest. 91, 2546–2551 (1993).

    PubMed  CAS  Article  Google Scholar 

  51. 51.

    E. Tremoli, P. Maderna, M. Sirtori, and C. Sirtori, Platelet aggregation and malondialdehyde formation in type IIA hypercholesterolemic patients, Haemostasis 8, 47–53 (1979).

    PubMed  CAS  Google Scholar 

  52. 52.

    M. Saladini, L. Menaube, and E. Ferrari, Binding ability of sialic acid towards biological and toxic metal ions. NMR, potentiometric and spectroscopic study, J. Inorg. Biochem. 88, 61–68 (2002).

    PubMed  Article  CAS  Google Scholar 

  53. 53.

    P. Sillanaukee, M. Pönniö, and K. Seppa, Sialic acid: new potential marker of alcohol abuse, Alcohol. Clin. Exp. Res. 23, 1039–1043 (1999).

    PubMed  CAS  Google Scholar 

  54. 54.

    P. J. Waters, E. Lewry, and C. A. Pennock, Measurement of sialic acid in serum and urine: clinical applications and limitations, Ann. Clin. Biochem. 29, 625–637 (1992).

    PubMed  CAS  Google Scholar 

  55. 55.

    S. Ekin, I. Meral, H. Gunduz, and N. Mert, Comparative study of total protein and total and lipid-associated serum sialic acid levels in patients with type 2 diabetes mellitus, J. Clin. Lab. Anal. 17, 124–126 (2003).

    PubMed  Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Refiye yanardag.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

yanardag, R., Peksel, A., Yesilyaprak, B. et al. Effects of a combination of niacin and chromium(III)-chloride on the skin and lungs of hyperlipemic rats. Biol Trace Elem Res 103, 249–260 (2005). https://doi.org/10.1385/BTER:103:3:249

Download citation

Index Entries

  • Hyperlipemia
  • skin
  • lungs
  • glutathione
  • lipid peroxidation
  • niacin
  • chromium
  • sialic acid
  • uric acid