Skip to main content
Log in

Increases of calcium and magnesium and decrease of iron in human posterior longitudinal ligaments of the cervical spine with aging

  • Original Articles
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

To elucidate compositional changes of ligaments with aging, the authors investigated age-related changes of elements in the posterior longitudinal ligaments (PLLs) by inductively coupled plasma—atomic emission spectrometry. After the ordinary dissection, PLLs were resected from the subjects ranging in age from 65 to 95 yr. The PLLs of the cervical spine were resected between the fourth and fifth cervical vertebrae, the PLLs of the thoracic spine between the fifth and seventh thoracic vertebrae, and the PLLs of the lumbar spine between the second and third lumbar vertebrae. Calcium and magnesium increased progressively with aging in the PLLs of the cervical spine, but they did not increase with aging in the PLLs of the thoracic and lumbar spine. In contrast, iron decreased gradually with aging in the PLLs of the cervical spine. Regarding the relationships among elements, significant correlations were found among the contents of calcium, phosphorus, magnesium, and sodium in the PLLs of the cervical spine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Agostini, E. Ciorba, N. Caputo, et al., Myelopathic patterns of calcification of the posterior longitudinal ligament, Riv. Patol. Nerv. Ment. 100, 201–208 (1979).

    PubMed  CAS  Google Scholar 

  2. H. Firooznia, V. M. Benjamin R. S. Pinto, et al., Calcification and ossification of posterior longitudinal ligament of spine: its role in secondary narrowing of spinal canal and cord compression, NY State J. Med. 82, 1193–1198 (1982).

    CAS  Google Scholar 

  3. H. Firooznia, M. Rafii, C. Golimbu, et al., Computed tomography of calcification and ossification of posterior longitudinal ligament of the spine, J. Comput. Tomogr. 8, 317–324 (1984).

    Article  PubMed  CAS  Google Scholar 

  4. M. Hanna and I. Watt, Posterior longitudinal ligament calcification of the cervical spine, Br. J. Radiol. 52, 901–905 (1979).

    PubMed  CAS  Google Scholar 

  5. Y. Hashizume, Pathological studies on the ossification of the posterior longitudinal ligament (opll), Acta Pathol. Jpn. 30, 255–273 (1980).

    PubMed  CAS  Google Scholar 

  6. G. R. Harsh, 4th, G. W. Sypert, P. R. Weinstein, et al., Cervical spine stenosis secondary to ossification of the posterior longitudinal ligament, J. Neurosurg. 67, 349–357 (1987).

    PubMed  Google Scholar 

  7. Y. Hiramatsu and T. Nobechi, Calcification of the posterior longitudinal ligament of the spine among Japanese, Radiology 100, 307–312 (1971).

    PubMed  CAS  Google Scholar 

  8. K. Izawa, Comparative roentgenographical study on the incidence of ossification of the posterior longitudinal ligament and other degenerative changes of the cervical spine among Japanese, Koreans, Americans and Germans, Nippon Seikeigeka Gakkai Zasshi 54, 461–474 (1980).

    PubMed  CAS  Google Scholar 

  9. A. Kurata, K. Tokiwa, I. Kitahara, et al., Myelopathy caused by hypertrophy of the posterior longitudinal ligament (HPLL): case report, No Shinkei Geka 15, 651–655 (1987).

    PubMed  CAS  Google Scholar 

  10. T. Lee, P. B. Chacha, and J. Khoo, Ossification of posterior longitudinal ligament of the cervical spine in non-Japanese Asians, Surg. Neurol. 35, 40–44 (1991).

    Article  PubMed  CAS  Google Scholar 

  11. H. Minagi and A. T. Gronner, Calcification of the posterior longitudinal ligament: a cause of cervical myelopathy, Am. J. Roentgenol. Radium Ther. Nucl. Med. 105, 365–369 (1969).

    PubMed  CAS  Google Scholar 

  12. K. Ono, K. Yonenobu, S. Miyamoto, et al., Pathology of ossification of the posterior longitudinal ligament and ligamentum flavum, Clin. Orthop. 359, 18–26 (1999).

    Article  PubMed  Google Scholar 

  13. J. O. Orth, Calcification and ossification of the posterior and longitudinal ligament of the cervical spine, ROFO Fortschr. Geb. Rontgenstr. Nuklearmed. 122, 442–445 (1975).

    Article  PubMed  CAS  Google Scholar 

  14. W. M. Park and K. Mourad, Ossification and calcification of the posterior longitudinal ligament of the spine, Br. J. Radiol. 53, 375–376 (1980).

    Article  PubMed  CAS  Google Scholar 

  15. D. Resnick, J. Guerra, Jr, C. A. Robinson, et al., Association of diffuse idiopathic skeletal hyperostosis (DISH) and calcification and ossification of the posterior longitudinal ligament, Am. J. Roentgenol. 131, 1049–1053 (1978).

    CAS  Google Scholar 

  16. Y. S. Soo and A. S. Sachdev, Calcification in the posterior longitudinal ligament as a cause of cervical myelopathy, Med. J. Aust. 1, 743–744 (1971).

    PubMed  CAS  Google Scholar 

  17. K. Terayama, So-called calcification of the posterior longitudinal ligament, Seikei Geka 21, 1013 (1970).

    PubMed  CAS  Google Scholar 

  18. Y. Tohno, S. Tohno, H. Matsumoto, et al., A trial of introducing soft X-ray apparatus into dissection practice for students, J. Nara Med. Assoc. 36, 365–370 (1985).

    Google Scholar 

  19. Y. Tohno, S. Tohno, T. Minami, et al., Age-related changes of mineral contents in the human thoracic aorta and in the cerebral artery, Biol. Trace Element Res. 54, 23–31 (1996).

    CAS  Google Scholar 

  20. M. D. Grynpas, K. P. H. Pritzker, and R. G. V. Hancock, Neutron activation analysis of bulk and selected trace elements in bones using a low flux slowpoke reactor, Biol. Trace Element Res. 13, 333–344 (1987).

    CAS  Google Scholar 

  21. S. Tohno, Y. Tohno, T. Minami, et al., Elements of calcified sites in human thoracic aorta, Biol. Trace Element Res. 86, 23–30 (2002).

    Article  CAS  Google Scholar 

  22. H. Tsukimoto, A case report: autopsy of syndrome of compression of spinal cord owing to ossification within spinal canal of cervical spines, Nihon Geka Hokan 29, 1003–1007 (1960).

    Google Scholar 

  23. H. Seki, N. Tsuyama, K. Hayashi, et al., Ossification of the posterior longitudinal ligament, a clinical analysis of 185 cases, Seikeigeka 25, 704–710 (1974).

    Google Scholar 

  24. R. Yagan, M. A. Khan, and E. M. Bellon, Spondylitis and posterior longitudinal ligament ossification in the cervical spine, Arthritis Rheum. 26, 226–230 (1983).

    Article  PubMed  CAS  Google Scholar 

  25. S. Tohno, Y. Tohno, T. Minami, et al., Difference of mineral contents in human intervertebral disks and its age-related change, Biol. Trace Element Res. 52, 117–124 (1996).

    CAS  Google Scholar 

  26. T. Kubota, K. Sato, H. Kawano, et al., Ultrastructure of early calcification in cervical ossification of the posterior longitudinal ligament. J. neurosurg. 61, 131–135 (1984).

    Article  PubMed  CAS  Google Scholar 

  27. Y. Tohno, Y. Moriwake, Y. Takano, et al., Age-related changes of elements in human anterior cruciate ligaments and ligamenta capitum femorum, Biol. Trace Element Res. 68, 181–192 (1999).

    CAS  Google Scholar 

  28. Y. Tohno, S. Tohno, Y. Moriwake, et al., Accumulation of calcium and phosphorus accompanied by increase of magnesium and decrease of sulfur in human arteries, Biol. Trace Element Res. 82, 9–19 (2001).

    Article  CAS  Google Scholar 

  29. S. Tohno, Y. Tohno, Y. Moriwake, et al., Quantitative changes of calcium, phosphorus, and magnesium in common iliac arteries with aging. Biol. Trace Element Res. 84, 57–66 (2001).

    Article  CAS  Google Scholar 

  30. Y. Tohno, S. Tohno, Y. Moriwake, et al., Simultaneous accumulation of calcium, phosphorus, and magnesium in various human arteries. Biol. Trace Element Res. 82, 21–28 (2001).

    Article  CAS  Google Scholar 

  31. S. Tohno, Y. Tohno, T. Minami, et al., Relationships among element contents in the internal jugular vein similar to the arteries, Biol. Trace Element Res. 88, 223–233 (2002).

    Article  CAS  Google Scholar 

  32. Y. Takano, Y. Moriwake, Y. Tohno, et al., Age-related changes of elements in the human articular disk of the temporomandibular joint, Biol. Trace Element Res. 67, 269–276 (1999).

    CAS  Google Scholar 

  33. R. Z. Le Geros, S. R. Contiguglia, and A. C. Alfrey, Pathological calcification associated with uremia, two types of calcium phosphate deposits, Calcif. Tissue Res. 13, 173–185 (1973).

    Article  Google Scholar 

  34. N. C. Blumenthal, F. Betts, and A. S. Posner, Stabilization of amorphous calcium phosphate by Mg and ATP, Calcif. Tissue Res. 13, 173–185 (1977).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Utsumi, M., Azuma, C., Tohno, S. et al. Increases of calcium and magnesium and decrease of iron in human posterior longitudinal ligaments of the cervical spine with aging. Biol Trace Elem Res 103, 217–227 (2005). https://doi.org/10.1385/BTER:103:3:217

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/BTER:103:3:217

Index Entries

Navigation