Skip to main content
Log in

Competitive inhibition and selectivity enhancement by Ca in the uptake of inorganic elements (Be, Na, Mg, K, Ca, Sc, Mn, Co, Zn, Se, Rb, Sr, Y, Zr, Ce, Pm, Gd, Hf) by carrot (Daucus carota cv. U.S. harumakigosun)

  • Original Articles
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

We investigated the uptake of inorganic elements (Be, Na, Mg, K, Ca, Sc, Mn, Co, Zn, Se, Rb, Sr, Y, Zr, Ce, Pm, Gd, and Hf) and the effect of Ca on their uptake in carrots (Daucus carota cv. U.S. harumakigosun) by the radioactive multitracer technique. The experimental results suggested that Na, Mg, K, and Rb competed for the functional groups outside the cells in roots with Ca but not for the transporter-binding sites on the plasma membrrane of the root cortex cells. In contrast, Y, Ce, Pm, and Gd competed with Ca for the transporters on the plasma membrane. The selectivity, which was defined as the value obtained by dividing the concentration ratio of an elemental pair, K/Na, Rb/Na, Be/Sr, and Mg/Sr, in the presence of 0.2 and 2 ppm Ca by that of the corresponding elemental pair in the absence of Ca in the solution was estimated. The selectivity of K and Rb in roots was increased in the presence of Ca. The selectivity of Be in roots was not affected, whereas the selectivity of Mg was increased by Ca. These observations suggest that the presence of Ca in the uptake solution enhances the selectivity in the uptake of metabolically important elements against unwanted elements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Koyama, M. Shirakawa, J. Takada, Y. Katayama, and T. Mastubara, Trace elements in land plants: concentration range and accumulators of rare earths, barium, radium, manganese, iron, cobalt, and heavy halogens, J. Radioanal. Nucl. Chem. 112, 489–506, (1987).

    Article  CAS  Google Scholar 

  2. T. Ozaki, S. Enomoto, Y. Minai, S. Ambe, and Y. Makide, A survey of trace elements in pteridophytes, Biol. Trace Elem. Res. 74, 259–273 (2000).

    Article  PubMed  CAS  Google Scholar 

  3. S. K. Hefler, and B. A. Averill, The ‘manganse (III)-containing’ purple acid phosphatase from sweet potates in an iron enzyme, Biochem. Biophys. Res. Commun. 146, 1173–1177 (1987).

    Article  PubMed  CAS  Google Scholar 

  4. B. L. Vallee, and D. S. Auld, Zinc coordination, function, and structure of zinc enzymes and other proteins, Biochemistry, 29, 5647–5659 (1990).

    Article  PubMed  CAS  Google Scholar 

  5. M. C. Edwards, G. N. Smith, and D. J. F. Bowling, Guard cells extrude protons prior to stomatal opening—a study using fluorescence microscopy and pH microelectrodes, J. Exp. Bot. 39, 1541–1547 (1988).

    Article  Google Scholar 

  6. W. Busseler, Die Entwicklung von Calcium-Mangelsymptomen, Z. Pflanzener-naehr. Dueng. Bodenkd. 100, 53–58 (1963).

    Article  Google Scholar 

  7. C. R. Caldwell, and A. Haug, Temperature dependence of the barley root plasma membrane-bound Ca2+ and Mg2+-dependent ATPase, Physiol. Plant 53, 117–124 (1981).

    Article  CAS  Google Scholar 

  8. R. L. Legge, E. Thompson, J. E. Baker, and M. Lieberman, The effect of calcium on the fluidity and phase properties of microsomal membranes isolated from postclimacteric Golden Delicious Apples, Plant Cell Physiol. 23, 161–169 (1982).

    CAS  Google Scholar 

  9. H. Matsumoto, Repression of proton extrusion from intact cucumber roots and the proton transport rate of microsomal membrane vesicles of the roots due to Ca2+ starvation, Plant Cell Physiol. 29, 79–84 (1988).

    CAS  Google Scholar 

  10. S. Muhammed, M. Akbar, and H. U. Neue, Effect of Na/Ca and Na/K ratios in saline culture solution on the growth and mineral nutrition of rice (Oryza sativa L.), Plant Soil 104, 57–62 (1987).

    Article  CAS  Google Scholar 

  11. C. Schimansky, Der Einfluss einiger Versuchsparameter auf das Fluxverhalten von 28Mg bei Gerstenkeimpflanzen in Hydrokulturversuchen, Landwirtsch. Forsch. 34, 154–165 (1981).

    CAS  Google Scholar 

  12. V. C. Baligar, J. H. Elgin, Jr., and C. D. Foy, Variability in alfalfa for growth and mineral uptake and efficiency ratios under aluminum stress, Agron. J. 81, 223–229 (1989).

    Article  CAS  Google Scholar 

  13. H. Stienen, and J. Bauch, Element content in tissues of spruce seedlings from hydroponic cultures simulating acidification and deacidification, Plant Soil 106, 231–238 (1988).

    Article  CAS  Google Scholar 

  14. C. A. Peterson, Exodermal Casparian bands: their significance for ion uptake by roots, Physiol. Plant 72, 204–208 (1988).

    Article  CAS  Google Scholar 

  15. D. E. Enston, and C. A. Peterson, The apoplastic permeability of root apices, Can. J. Bot. 70, 1502–1512 (1992).

    Google Scholar 

  16. S. Ambe, S. Y. Chen, Y. Ohkubo, et al., Preparation of a radioactive multitracer soltuionf rom gold foil irradiated by 135 MeV/nucleon 14N ions, Chem. Lett. 1991, 149 (1991).

    Article  Google Scholar 

  17. S. Ambe, T. Shinonaga, T. Ozaki, S. Enomoto, H. Yasuda, and S. Uchida, Ion competition effects on the selective absorption of radionuclides by komatsuna (Brassica rapa var. perviridis), Environ. Exp. Bot. 41, 185–194 (1999).

    Article  CAS  Google Scholar 

  18. S. Gouthu, R. G. Weginwar, T. Arie, et al., Subcellular distribution and translocation of radionuclides in plants, Environ. Toxicol. Chem. 18, 2023–2027 (1999).

    Article  CAS  Google Scholar 

  19. T. Ozaki, S. Enomoto, Y. Minai, S. Ambe, F. Ambe, and Y. Makide, Beneficial effect of rare earth elements on the growth of Dryopteris Erythrosora J. Plant Physiol. 156, 330–334 (2000).

    CAS  Google Scholar 

  20. H. F. Wang, N. Takematsu, and S. Ambe, Effects of soil acidity on the uptake of trace elements in soybean and tomato plants, Appl. Radiat. Isot. 52, 803–811 (2000).

    Article  PubMed  CAS  Google Scholar 

  21. S. Ambe, S. Sekido, T. Ozaki, and I. Yamaguchi, Uptake of trace elements by rice plants inoculated with Pyricularia oryzae, Appl. Radiat. Isot. 56, 473–476 (2002).

    Article  PubMed  CAS  Google Scholar 

  22. T. Ozaki, S. Ambe, S. Enomoto, Y. Minai, S. Yoshida, and Y. Makide, Multitracer study on the uptake mechanism of yttrium and rare-earth-elements by autumn fern, Radiochim. Acta 90, 303–307 (2002).

    Article  CAS  Google Scholar 

  23. T. Ozaki, S. Ambe, T. Abe, and A. J. Francis, Effect of humic acid on the bioavailability of radionuclides to rice plants, Anal. Bioanal. Chem. 375, 505–510 (2003).

    PubMed  CAS  Google Scholar 

  24. T. Ozaki, S. Ambe, T. Abe, and A. J. Francis, Uptake of short-half-life radionuclides, 28Mg, 43K and 47Ca, in carrot studied by the multitracer technique: feasibility of utilization of the radionuclides in environmental research, J. Radional. Nucl. Chem. 258, 89–92 (2003).

    Article  CAS  Google Scholar 

  25. T. Ozaki, S. Enomoto, Y. Minai, S. Ambe, F. Ambe, and Y. Makide, Influence of aluminum on the uptake of various cations from a solution into carrots, J. Radioanal. Nucl. Chem. 235, 285–289 (1998).

    Article  CAS  Google Scholar 

  26. T. Ozaki, S. Enomoto, Y. Minai, S. Ambe, F. Ambe, and Y. Makide, Effect of zinc on the uptake of various elements into carrot, J. Radioanal. Nucl. Chem. 242, 703–707 (1999).

    Article  CAS  Google Scholar 

  27. T. Ozaki, S. Ambe, Y. Minai, et al., Effects of ionic valency of interacting metal elements in ion uptake by carrot (Daucus carota cv. U.S. harumakigosun), Biol. Trace Elem. Res. 84, 197–211 (2001).

    Article  PubMed  CAS  Google Scholar 

  28. S. Ambe, S. Y. Chen, Y. Ohkubo, et al., “Multitracer” a new tracer technique—its principle, features, and application, J. Radioanal. Nucl. Chem. 195, 297–303 (1995).

    Article  CAS  Google Scholar 

  29. S. Ambe, T. Ozaki, R. G. Weginwar, S. Enomoto, and F. Ambe, Simultaneous production of 28Mg and 47Ca by high-energy heavy ion irradiation for applications in biology, Radiochim. Acta 89, 63–66 (2001).

    Article  CAS  Google Scholar 

  30. L. Erdei, and S. Trivedi, Caesium/potassium selectivity in wheat and lettuce of different K+ status, J. Plant. Physiol. 138, 696–699 (1991).

    CAS  Google Scholar 

  31. F. G. Viets, Jr., Calcium and other polyvalent cations as accelerators of ion accumulation by excised barley roots, Plant Physiol. 19, 466–480 (1944).

    Article  PubMed  CAS  Google Scholar 

  32. H. Marschner, General introduction to the mineral nutrition of plants, in Encyclopedia of Plant Physiology. New Series, A. Läuchli and R. L. Bieleski, eds., Springer-Verlag, Berlin, Vol. 15A, pp. 5–60 (1983).

    Google Scholar 

  33. D. P. Heenan, and L. C. Campbell, Influence of temperature on the expression of manganese toxicity by two soybean varieties, Plant Soil 47, 219–227 (1981).

    Article  Google Scholar 

  34. C. H. Evans, Interesting and useful biochemical properties of lanthanides, Trends Biol. Sci. 8, 445–449 (1983).

    Article  CAS  Google Scholar 

  35. C. T. Bernal, F. T. Bingham, and J. Oertli, Salt tolerance of Mexican wheat. II. Relation to variable sodium chloride and length of growing season, Soil Sci. Soc. Am. Proc. 38, 777–780 (1974).

    Article  Google Scholar 

  36. N. S. Pasricha, V. K. Nayyar, N. S. Randhawa, and M. K. Sinha, Influence of sulphur fertilization on suppression of molybdenum uptake by berseem (Trifolium alexandriunum) and oats (Avena sativa) grown on a molybdenum-toxic soil, Plant Soil 46, 245–250 (1977).

    Article  CAS  Google Scholar 

  37. C. Chatterjee, N. Nautiyal, and S. C. Agarwala, Excess sulphur partially alleviates copper deficiency effects in mustard, Soil Sci. Plant Nutr. 38, 57–64 (1992).

    CAS  Google Scholar 

  38. W. D. Jeschke, and W. Jambor, Determination of unidirectional sodium fluxes in roots of intact sunflower seedlings, J. Exp. Bot. 32, 1257–1272 (1981).

    Article  CAS  Google Scholar 

  39. H. Mennen, B. Jacoby, and H. Marschner, Is sodium proton antiport ubiquitous in plant cells?, J. Plant Physiol. 137, 180–183 (1990).

    CAS  Google Scholar 

  40. J. J. Lehr, Sodium as a plant nutrient, J. Sci. Food Agric. 4, 460–468 (1953).

    Article  CAS  Google Scholar 

  41. C. Hecht-Buchholz, R. Pflüger, and H. Marschner, Einfluss von Natrium-chlorid auf Mitochondrienzahl und Atmung von Maiswurzelspitzen, Z. Planzenphysiol. 65, 410–417 (1971).

    CAS  Google Scholar 

  42. H. Kuppelwieser, and U. Feller, Transport of rubidium and strontium to the ear in mature, excised shoots of wheat: effects of temperature and stem length on rubidium removal from the xylem, Plant Soil 132, 281–288 (1991).

    CAS  Google Scholar 

  43. J. A. Laszlo, Changes in soybean fruit Ca2+(Sr2+) and K+ (Rb+) transport ability during development, Plant Physiol. 104, 937–944 (1994).

    PubMed  CAS  Google Scholar 

  44. P. Cammarano, A. Felsani, M. Gentile, C. Gualerzi, C. Romeo, and G. Wolf, Formation of active hybrid 80-S particles from subunits of pea seedlings and mammalian liver ribosomes, Biochem. Biophys. Acta 281, 625–642 (1972).

    PubMed  CAS  Google Scholar 

  45. D. T. Clarkson, and J. B. Hanson, The mineral nutrition of higher plants, Annu. Rev. Plant Physiol. 31, 239–298 (1980).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ozaki, T., Ambe, S., Abe, T. et al. Competitive inhibition and selectivity enhancement by Ca in the uptake of inorganic elements (Be, Na, Mg, K, Ca, Sc, Mn, Co, Zn, Se, Rb, Sr, Y, Zr, Ce, Pm, Gd, Hf) by carrot (Daucus carota cv. U.S. harumakigosun). Biol Trace Elem Res 103, 69–82 (2005). https://doi.org/10.1385/BTER:103:1:069

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/BTER:103:1:069

Index Entries

Navigation