Skip to main content
Log in

Health effects of natural dust

Role of trace elements and compounds

  • Review Article
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

This article reviews the health effects of trace elements carried in natural dusts of geologic or geochemical origin. The sources of these dusts are diverse, including volcanoes, dust storms, long-range transport of desert dust, and displacement through natural processes such as landslides and earthquakes. The primary focus is dust exposures affecting communities rather than occupational groups (which have been comprehensively explored in other publications). The principal elements and compounds reviewed are trace metals (including As, Hg, Cd, and Fe), radioactive elements, fluoride, silicates, natural asbestiform compounds, and alkali salts. The pathways by which such agents affect human populations are explored, including carriage through water, air, soil, and the food chain. The mechanisms of biotoxicity and the acute and chronic consequences on health associated with these elements are described. The discussion explores problems inferring risk and disease causation from natural dust exposures using standard epidemiological indicators, particularly for chronic outcomes, and will argue for the importance of the ecological perspective in assessing pathogenesis. The authors stress the global scale of the problem, which remains underevaluated and underreported in terms of health implications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Moulin, C. E. Lambert, F. Dulac, and U. Dayan, Control of atmospheric export of dust from North Africa by the North Atlantic Oscillation, Nature 387, 691–694 (1997).

    Article  CAS  Google Scholar 

  2. D. W. Griffin, C. A. Kellogg, and E. A. Shinn, Dust in the wind: long range transport of dust in the atmosphere and its implications for global public and ecosystem health, Global Change Hum Health 2, 20–33 (2001).

    Article  Google Scholar 

  3. S. Rutherford, E. Clark, G. McTainsh, et al., Characteristics of rural dusts events shown to impact on asthma severity in Brisbane, Australia, Int. J. Metereol. 42, 217–225 (1999).

    CAS  Google Scholar 

  4. J. M. Prospero, Long-range transport of mineral dust in the global atmosphere: impact of African dust on the environment of the southeastern United States, Proc. Natl. Acad. Sci. USA 96(7), 3396–3403 (1999).

    Article  PubMed  CAS  Google Scholar 

  5. P. F. Holt, Inhaled Dust and Disease, Wiley, Chichester (1987).

    Google Scholar 

  6. A. J. Ridgwell, Dust in the Earth system: the biogeochemical linking of land, air and sea, Phil. Trans. R. Soc. London, A 360(1801), 2905–2924 (2002).

    Article  CAS  Google Scholar 

  7. F. Grousset, P. Ginoux, A. Bory, and P. Biscaye, Case study of a Chinese dust plume reaching the French Alps, Geophys. Res. Lett. 30(6), 1277 (2003).

    Article  Google Scholar 

  8. S. Moune, P. J. Gauthier, S. Gislason, et al., Trace elements mobility during degassing processes at Hekla (Iceland) and Masaya (Nicaragua) volcanoes, Geophys. Res. Abstr. 5, 3982 (2003).

    Google Scholar 

  9. D. Gillette, Soil derived dust as a source of silica: aerosol properties, emissions, deposition, and transport, J. Expo. Anal. Environ. Epidemiol. 7(3), 303–311 (1997).

    PubMed  CAS  Google Scholar 

  10. R. J. van Klaveren and B. Nemery, Role of reactive oxygen species in occupational and environmental obstructive pulmonary diseases, Curr. Opin. Pulmonary Med. 5(2), 118–123 (1999).

    Article  Google Scholar 

  11. C. J. Horwell, I. Fenoglio, K. Vala Ragnarsdottir, et al., Surface reactivity of volcanic ash from the eruption of Soufriere Hills volcano, Montserrat, West Indies with implications for health hazards, Environ. Res. 93(2), 202–215 (2003).

    Article  PubMed  CAS  Google Scholar 

  12. B. Melloni, A. Vergnenegre, P. Lagrange, and F. Bonnaud, Household radon exposure, Rev. Malad. Respir. 17(6), 1061–1071 (2000).

    CAS  Google Scholar 

  13. S. R. Gomez, R. A. Parker, J. A. Dosman, et al., Respiratory health effects of alkali dust in residents near desiccated Old Wives Lake, Arch. Environ. Health 47(5), 364–369 (1992).

    Article  PubMed  CAS  Google Scholar 

  14. P. Westerholm, Silicosis. Observations on a case register. Scand. J. Work Environ. Health 6(Suppl. 2), 1–86 (1980).

    PubMed  Google Scholar 

  15. A. Ferrera and G. Faraone, Morphology and pathogenesis of pumice pneumoconiosis, Riv. Infort. Malattic. Prof. 40, 453 (1953).

    Google Scholar 

  16. A. Searl, A. Nicholl, P. J. Baxter, Assessment of the exposure of islanders to ash from the Soufriere Hills volcano, Montserrat, British West Indies, Occup. Environ. Med. 9(8), 523–531 (2002).

    Article  Google Scholar 

  17. T. Norboo, P. T. Angchuk, M. Yahya, et al., Silicosis in a Himalayan village population: role of environmental dust. Thorax 46(5), 341–343 (1991).

    Article  PubMed  CAS  Google Scholar 

  18. H. N. Saiyed, Y. K. Sharma, H. G. Sadhu, et al., Non-occupational pneumonconiosis at high altitude villages in central Ladahk. Br. J. Ind. Med. 48(12), 825–829 (1991).

    PubMed  CAS  Google Scholar 

  19. P. Kelleher, K. Pacheco, et al., Inorganic dust pneumonias: the metal-related parenchymal disorders, Environ. Health Perspect. 108(Suppl. 4), 685–696 (2000).

    Article  PubMed  CAS  Google Scholar 

  20. L. S. Newman, Metals, in Occupational and Environmental Respiratory Disease, P. Harber, M. B. Schenker, and J. R. Blames, eds., Mosby, St. Louis, MO (1996).

    Google Scholar 

  21. R. Avila, Epidemiologic aspects of suberosis and vineyard sprayer's lung, Bronchopneumologie 20, 50–60 (1980).

    Google Scholar 

  22. L. S. Newman, K. Kreiss, T. E. King, Jr., et al., Pathologic and immunologic altercation in early stages beryllium disease: re-examination of disease definition and natural history. Am. Rev. Respir. Dis. 139, 1479–1486 (1989).

    PubMed  CAS  Google Scholar 

  23. A. Funahashi, D. P. Schlueter, K. Pintar, et al., Welder's pneumoconiosis: tissue elemental microanalysis by energy dispersive x-ray analysis, Br. J. Ind. Med. 5, 14–18 (1988).

    Google Scholar 

  24. E. S. Gurzau, C. Neagu, E. A. Gurzau, Essential metals—case study on iron. Ecotoxicol Environ. Safety 56(1), 190–200 (2003).

    Article  PubMed  CAS  Google Scholar 

  25. I. Baris, L. Simanato, M. Artvinlu, et al., Epidemiological and environmental evidence of the health effects of exposure to erionite fibers; a four-year study in the Cappadocian region of Turkey, Int. J. Cancer 39, 10–17 (1987).

    Article  PubMed  CAS  Google Scholar 

  26. G. Hillerdal, The pathogenesis of pleural plaques and pulmonary asbestosis: possibilities and impossibilities, Eur. J. Respir. Dis. 61, 129–138 (1980).

    PubMed  CAS  Google Scholar 

  27. M. Neuberger, P. Ambrosch, and M. Kundi, Prevention of occupational cancer such as in the asbestos cement industry, Zentbl. Bakt. I Abt. Orig. B 181, 81–86 (1985).

    CAS  Google Scholar 

  28. M. Germine, Asbestos in play sand, New Engl. J. Med. 315, 89 (1986).

    Google Scholar 

  29. T. Burikov, L. Michaelova, Uber den Sepiolitgehalt des Bodens in Gebieten mit endmischen pleuraverkalkagungen, Int. Arch. Arbmed. 29, 95–101 (1972).

    Article  Google Scholar 

  30. V. Rapisarda, M. Amati, S. Coloccini, et al. The in vitro release of hydroxyl radicals from dust containing fluoro-edenite fibers identified in the volcanic rocks of Biancavilla (eastern Sicily), Med. Lavoro 94(2), 200–206 (2003).

    PubMed  CAS  Google Scholar 

  31. P. Grandjean, O. Andersen, and G. D. Nielsen, Carcinogenicity of occupational nickel exposures: an evaluation of the epidemiologic evidence, Am. J. Ind. Med. 13, 193–209 (1988).

    Article  PubMed  CAS  Google Scholar 

  32. International Agency for Research on Cancer (IARC), Evaluation of Carcinogenic Risk of Chemicals to Man, Volume 1, IARC, Lyon (1972).

    Google Scholar 

  33. H. E. Stockinger, A review of world literature finds iron oxide noncarcinogenic, Am. Ind. Hyg. Assoc. J. 45, 127–133 (1984).

    Google Scholar 

  34. I. Ebihara and M. Kawami, Mineral dust exposure and systemic diseases, J. Environ. Pathol. Toxicol. Oncol. 19(1–2), 109–127 (2000).

    PubMed  CAS  Google Scholar 

  35. J. Augustin and R. Zejda, Cancer incidence and geochemical factors in the environment, Sci. Total Environ. 106(1–2), 155–163 (1991).

    Article  PubMed  CAS  Google Scholar 

  36. J. A. Centeno, F. G. Mullick, P. B. Tchounwou, et al., Environmental pathology and medical geology, in Medical Geology, O. Selinus, ed., Academic, London (2004).

    Google Scholar 

  37. T. Watanabe, T. Kondo, S. Asanuma, et al., Endemic fluorosis in southern China: radiological findings, Nippon Igaku Hoshasen Gakkai Zasshi (Nippon Acta Radiol.) 57(7), 425–426 (1997).

    PubMed  CAS  Google Scholar 

  38. Y. Haikel, J. C. Voegel, and R. M. Frank, Fluoride content of water, dust, soils and cereals in the endemic dental fluorosis area of Khouribga (Morocco), Arch. Oral Biol. 31(5), 279–286 (1986).

    Article  PubMed  CAS  Google Scholar 

  39. S. J. Cronin, M. J. Hedley, V. E. Neall, et al., Agronomic impact of tephra fallout from the 1995 and 1996 Ruapehu volcano eruptions, New Zealand, Environ. Geol. 34(1), 21–30 (1998).

    Article  CAS  Google Scholar 

  40. G. Yang, K. Ge, J. Chen, and X. Chen, Selenium-related endemic diseases and the daily nutritional requirements of humans, World Rev. Nutr. Diet 55, 98–152 (1988).

    PubMed  CAS  Google Scholar 

  41. P. Weinstein and A. Cook, Volcanic emissions and health, in Medical Geology, O. Selinus, ed., Academic, London (2004).

    Google Scholar 

  42. S. J. Cronin and D. S. Sharp, Environmental impacts on health from continuous volcanic activity at Yasur (Tanna) and Ambrym, Vanuatu, Int. J. Environ. Health Res. 12(2), 109–123 (2002).

    Article  PubMed  CAS  Google Scholar 

  43. V. Bencko and J. Vostal, Air pollution by solid particles and public health: when can we conclude on causality? Central Eur. J. Public Health 7(2), 63–66 (1999).

    Google Scholar 

  44. E. Derbyshire, Natural dust and pneumoconiosis in High Asia, in Geology and Health: Closing the Gap, H. C. W. Skinner and A. R. Berger, eds., Oxford University Press, New York (2003).

    Google Scholar 

  45. J. Douwes, P. Thorne, N. E. Pearce, et al., Bioaerosol health effects and exposure assessment: Progress and prospects, Ann. Occup. Hyg. 47, 187–200 (2003).

    Article  PubMed  CAS  Google Scholar 

  46. J. L. Aron and J. Patz, Ecosystem Change and Public Health: A Global Perspective, John Hopkins University Press, Baltimore, MD (2001).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cook, A.G., Weinstein, P. & Centeno, J.A. Health effects of natural dust. Biol Trace Elem Res 103, 1–15 (2005). https://doi.org/10.1385/BTER:103:1:001

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/BTER:103:1:001

Index Entries

Navigation