Skip to main content
Log in

Influence of extremely-low-frequency magnetic field on antioxidative melatonin properties in AT478 murine squamous cell carcinoma culture

  • Original Articles
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Effects of melatonin, extremely-low-frequency magnetic field (ELF-MF), and their combination on AT478 murine squamous cell carcinoma line were studied. Manganese superoxide dismutase (MnSOD), copper-zinc superoxide dismutase (Cu/ZnSOD), and glutathione peroxidase (GSH-Px) were used as markers of cells antioxidative status, and malondialdehyde (MDA) level was used as a marker of lipid peroxidation. After melatonin treatment, antioxidative enzyme activities were increased and MDA level was decreased. Application of ELF-MF on treated cells caused an increase of both superoxide dismutases activity and MDA level, but influence of ELF-MF on GSH-Px activity was negligible. All enzyme activity in culture medium containing melatonin (10−3, 10−4, 10−5 M) after exposure to ELF-MF were significantly diminished compared to cells treated only with melatonin. Also MDA levels after combined treatment with melatonin and ELF-MF were significantly decreased. Observed changes were statistically significant (p<0.05). These results strongly suggest that ELF-MF attenuates antioxidative actions of melatonin on cellular level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Jaworek, J. Bonior, A. Leja-Szpak, et al., Sensory nerves in central and peripheral control of pancreatic integrity by leptin and melatonin, J. Physiol. Pharmacol. 53, 51–74 (2002).

    PubMed  CAS  Google Scholar 

  2. P. B. Duell, D. L. Wheaton, A. Shultz, and H. Nguyen, Inhibition of LDL oxydation by melatonin requires supraphysiologic concentrations, Clin. Chem. 44, 1931–1936 (1998).

    PubMed  CAS  Google Scholar 

  3. W. S. Baldwin and J. C. Barrett, Melatonin attenuates hydrogen peroxide toxicity in MCF-7 cells only at pharmacological concentrations, Biochem. Biophys. Res. Commun. 250, 602–605 (1998).

    Article  PubMed  CAS  Google Scholar 

  4. E. Walters-Laporte, C. Furman, S. Fouquet, et al., A high concentration of melatonin inhibits in vitro LDL peroxidation but not oxidized LDL toxicity toward cultured endothelial cells, J. Cardiovasc. Pharmacol. 32, 582–592 (1998).

    Article  PubMed  CAS  Google Scholar 

  5. B. Vijayalaxmi, C. Thomas, R. J. Reiter, and T. Herman, Melatonin: from basic research to cancer treatment clinics, J. Clin. Oncol. 20, 2575–2601 (2002).

    Article  PubMed  CAS  Google Scholar 

  6. S. Sacco, L. Aquillini, P. Ghezzi, M. Pinza, and A. Guglielmotti, Mechanism of the inhibitory effect of melatonin on tumor necrosis factor production in vivo and in vitro, Eur. J. Pharmacol. 343, 249–255 (1998).

    Article  PubMed  CAS  Google Scholar 

  7. F. Dreher, B. Gabard, D. A. Schwindt, and H. I. M. Maibach, Topical melatonin in combination with vitamins E and C protects skin from ultraviolet-induced erythema: a human study in vivo, Br. J. Dermatol. 139, 332–333 (1998).

    Article  PubMed  CAS  Google Scholar 

  8. M. A. Lopez-Gonzalez, J. M. Guerrero, R. Torronteraz, C. Osuna, and F. Delgado, Ototoxicity caused by aminoglicosides is ameliorated by melatonin without interfering with the antibiotic capacity of the drugs, J. Pineal Res. 28, 26–33 (2000).

    Article  PubMed  CAS  Google Scholar 

  9. J. Pekarkova, S. Parara, V. Holecek, et al., Does exogenous melatonin influence the free radicals metabolism and pain sensation in rat? Physiol. Res. 50, 595–602 (2001).

    PubMed  CAS  Google Scholar 

  10. S. Cos, F. Fernandes, and E.J. Sanchez-Barcelo, Melatonin inhibits DNA synthesis in MCF-7 human breast cancer cells in vitro. Life Sci. 26, 2447–2453 (1996).

    Article  Google Scholar 

  11. C. E. Beyer, J. D. Steketee, and D. Saphier, Antioxidant properties of melatonin—an emerging mystery, Biochem. Pharmacol. 56, 1265–1272 (1998).

    Article  PubMed  CAS  Google Scholar 

  12. M. Podda and M. Grundmann-Kollmann, Low molecular weight antioxidants and their role in skin ageing, Clin. Exp. Dermatol. 26, 578–582 (2001).

    Article  PubMed  CAS  Google Scholar 

  13. F. Fulia, E. Gitto, S. Cuzzocrea, et al., Increased levels of malondialdehyde and nitrite/nitrate in the blood of asphyxiated newborns: reduction by melatonin, J. Pineal Res. 31, 343–349 (2001).

    Article  PubMed  CAS  Google Scholar 

  14. R. J. Reiter, D. Tan, L. C. Manchester, and W. Qi, Biochemical reactivity of melatonin with reactive oxygen and nitrogen species, Cell Biochem. Biophys. 34, 237–256 (2001).

    Article  PubMed  CAS  Google Scholar 

  15. J. Jaite and M. Zmyaslony, Rola melatoniny w molekularnym mechanizmie dzialaia slabych, stalych i sieciowych pól magnety cznych, Medycyna Pracy 1, 51–57 (2000).

    Google Scholar 

  16. D. A. Castroviejo, G. Escames, A. Carazo, J. Leon, H. Khaldy, and R. J. Reiter, Melatonin mitochondrial homeostasis and mitochondrial-related diseases, Curr. Topics Med. Chem. 2, 133–151 (2002).

    Article  CAS  Google Scholar 

  17. D. E. Blask, S. T. Wilson, and F. Zalatan, Physiological melatonin inhibition of human breast cancer cell growth in vitro: evidence for a glutathion-mediated pathway, Cancer Res. 57, 1909–1914 (1997).

    PubMed  CAS  Google Scholar 

  18. I. Antolin, C. Rodriguez, R. M. Sainz, et al., Neurohormone melatonin prevents cell damage: effect on gene expression for antioxidant enzymes, FASEB J. 10, 882–890 (1996).

    PubMed  CAS  Google Scholar 

  19. M. Kotler, C. Rodriguez, R. M. Sainz, I. Antlin, and A. Menendez-Pealez, Melatonin increases gene expression for antioxidant enzymes in rat brain cortex, J. Pineal Res. 24, 83–89 (1998).

    Article  PubMed  CAS  Google Scholar 

  20. A. Ubeda, M. A. Trillo, D. E. House, and C. F. Blackman, A 50 Hz magnetic field blocks melatonin-induced enhancement of junctional transfer in normal C3H/10T1/2 cells, Carcinogenesis 16(12), 2945–2949 (1995).

    Article  PubMed  CAS  Google Scholar 

  21. G. C. Brainard, R. Kavet, and L. I. Kheifets, The relationship between electromagnetic field and light exposures to melatonin and breast cancer risk: a review of the relevant literature, J. Pineal Res. 26, 65–100 (1999).

    Article  PubMed  CAS  Google Scholar 

  22. C. F. Blackman, S. G. Benane, and D. E. House, The influence of 1.2 μT, 60 Hz Magnetic fields on melatonin- and tamoxifen-induced inhibition of MCF-7 cell growth. Bioelectromagnetics 22, 122–128 (2001).

    Article  PubMed  CAS  Google Scholar 

  23. R. P. Liburdy, T. R. Sloma, R. Sokolic, and P. Yaswen, ELF magnetic fields, breast cancer, and melatonin: 60 Hz fields block melatonin's oncostatic action on ER+ breast cancer cell proliferation, J. Pineal Res. 14(2), 89–97 (1993).

    Article  PubMed  CAS  Google Scholar 

  24. R. J. Reiter, Static and extremely low frequency electrom agnetic field exposure: reported effects on the circadian production of melatonin, J. Cell Biochem. 51(4), 394–403 (1993).

    PubMed  CAS  Google Scholar 

  25. L. A. Rosen, I. Barber, and D. B. Lyle, A 0.5 G, 60 Hz magnetic field suppresses melatonin production in pinealocytes, Bioelectromagnetics 19(2), 123–127 (1998).

    Article  PubMed  CAS  Google Scholar 

  26. H. Brendel, M. Niehaus and A. Lerchl, Direct supressive effects of weak magnetic fields (50 Hz and 16 2/3Hz) on melatonin synthesis in the pineal gland of Djungarian hamsters (Phodopus sungorus), J. Pineal Res. 29, 228–233 (2000).

    Article  PubMed  CAS  Google Scholar 

  27. E. Beck, B. Beck, H. Duliban, and Z. Drzazga, An effect of static and ELF magnetic field on enzyme activity—in vitro study, IFMBE Proceedings Medicon, 765–768 (2001).

  28. A. Sieron, Zastosowanie pol magnetycznych w medycynie—podstawy teoretyczne, efekty biologiczne i zastosowania kliniczne, 2nd ed., α-Medica Press (2002).

  29. R. Tarnawski, J. Kummermehr, and K. R. Trott, The radiosensitivity of recurrent clones of an irradiated murine squamous cell carcinoma in the in vitro megacolony system, Radiother. Oncol. 46, 209–214 (1998).

    Article  PubMed  CAS  Google Scholar 

  30. Y. Oyanagui, Reevaluation of assay methods and establishment of kit for superoxide dismutae activity, Anal. Biochem. 142, 290–296 (1984).

    Article  PubMed  CAS  Google Scholar 

  31. D. E. Paglia and W. N. Valentine, Studies on the quantitative and qualitative characterisation of erythrocyte glutathione peroxidase, J. Lab. Clin. Med. 70, 158 (1967).

    PubMed  CAS  Google Scholar 

  32. H. Ohkawa, N. Ohishi, and K. Yagi, Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction, Anal. Biochem. 95, 351 (1979).

    Article  PubMed  CAS  Google Scholar 

  33. J. K. Kim, S. W. Chae, G. C. Hur, et al., Manganese superoxide dismutase expression correlates with a poor prognosis in gastric cancer, Pathobiology 70, 353–360 (2002–2003).

    Article  Google Scholar 

  34. J. C. Mayo, R. M. Sainz, I. Antolin, F. Herrera, V. Martin, and C. Rodriguez, Melatonin regulation of antioxidant enzyme gene expression, Cell. Mol. Life Sci. 59, 1706–1713 (2002).

    Article  PubMed  CAS  Google Scholar 

  35. M. T. Albarran, S. Lopez-Burillo, M. I. Pablos, R. J. Reiter, and M. T. Agapito, Endogenous rhythms of melatonin, total antioxidant status and superoxide dismutase activity in several tissues of chick and their inhibition by light, J. Pineal Res. 30(4), 227–233 (2001).

    Article  PubMed  CAS  Google Scholar 

  36. C. Osuna, R. J. Reiter, J. J. Garcia, et al., Inhibitory effect of melatonin on homocysteine-induced lipid peroxidation in rat brain homogenates, Pharmacol. Toxicol. 90(1), 32–72 (2002).

    Article  PubMed  CAS  Google Scholar 

  37. M. Karbownik, E. Gitto, A. Lewinski, and R. J. Reiter Induction of lipid peroxidation in hamster organs by the carcinogen cadmium: melioration by melatonin, Cell Biol. Toxicol. 17(1), 33–40 (2001).

    Article  PubMed  CAS  Google Scholar 

  38. R. Polaniak, E. Birkner, A. Kasperczyk, M. Widel, S. Kasperczyk, and E. Grucka Mamczar, Wplyw holoksanu na wzrost hodowli megakolonii raka plaskonablonkowego, in vitro, Diagn. Lab. 37, 289–293 (2001).

    CAS  Google Scholar 

  39. E. Beck, R. Polaniak, M. Widel, B. Beck, and Z. Drzazga., Influence of electromagnetic field on murine squamous cell carcinoma cells in vitro, IFMBE Proceedings Medicon, 683–686 (2001).

  40. M. Ishido, H. Nitta, and M. Kabuto, Magnetic fields (MF) of 50 Hz at 1.2 microT as well as 100 microT cause uncoupling of inhibitory pathways of adenylyl cyclase mediated by melatonin 1a receptor in MF-sensitive MCF-7 cells, Carcinogenesis 22(7), 1043–1048 (2001).

    Article  PubMed  CAS  Google Scholar 

  41. A. R. Liboff, A. Chiabrera, C. Nicolini, and H. P. Schwan, Cyclotron resonance in membrane transport. Interaction between electromagnetic fields and cells, Plenum Press London, UK, pp. 281–296 (1985).

    Google Scholar 

  42. V. V. Lednev, Possible mechanism for the influence of weak magnetic fields on biological systems, Bioelectromagnetics 12, 71–75 (1991).

    Article  PubMed  CAS  Google Scholar 

  43. J. P. Blanchard and C. F. Blackman, Clarification and application of an ion parametric resonance model for magnetic field interactions with biological systems, Bioelectromagnetics 15, 217–233 (1994).

    Article  PubMed  CAS  Google Scholar 

  44. S. Roy, Y. Noda, V. Ekert, et al. The phorbol 12-mirystate 13-acetate (PMA)—induced oxidative burst in rat peritoneal neutrophils is increased by a 0.1 mT (60 Hz) magnetic field, FEBS Lett. 376, 164–166 (1995).

    Article  PubMed  CAS  Google Scholar 

  45. S. Johann and G. Blümel, Influence of electromagnetic fields on respiratory burst of human granulocytes in vitro, 2nd Congress of the European Bioelectromagnetics Association, Bled (1993).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Żwirska-Korczala, K., Adamczyk-Sowa, M., Polaniak, R. et al. Influence of extremely-low-frequency magnetic field on antioxidative melatonin properties in AT478 murine squamous cell carcinoma culture. Biol Trace Elem Res 102, 227–243 (2004). https://doi.org/10.1385/BTER:102:1-3:227

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/BTER:102:1-3:227

Index Entries

Navigation