Skip to main content
Log in

Relationship among managanese, arginase, and nitric oxide in childhood asthma

  • Original Articles
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

It has been demonstrated that the lowest intakes of manganese (Mn) were associated with more than a fivefold increased risk of bronchial reactivity. It was also known that nitric oxide (NO) production was found to be significantly higher in asthmatics. There is a reciprocal pathway between arginase and nitric oxide synthase (NOS) for NO production, and Mn is required for arginase activity and stability. We investigated plasma NO, arginase, and its cofactor Mn levels to evaluate this reciprocal pathway in patients with childhood asthma. Arginase activities and Mn and NO levels were measured in plasma from 31 patients with childhood asthma and 22 healthy control subjects. Plasma arginase activities and Mn concentrations were found to be significantly lower and NO levels were significantly higher found to be significantly lower and NO levels were significantly higher in patients with childhood asthma as compared to the control subjects. There was a significantly positive correlation between plasma Mn and arginase and negative correlations between arginase and NO values and Mn and NO values in patients with childhood asthma. These data indicate that the lower concentration of Mn could cause lower arginase activity and this could also upregulate NO production by increasingl-arginine content in patients with childhood asthma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Bousquet, P. K. Jeffery, W. W. Busse, M. Johnson, and A. M. Vignola, Asthma: from brochoconstriction to airways in flammation and remodeling. Am.J. Respir. Crit. Care. Med. 161, 1720–1745 (2000).

    PubMed  CAS  Google Scholar 

  2. C. P. Jenkinson, W. W. Grody, and S. D. Cederbaum, Comparative properties of arginases, Comp. Biochem. Physiol. B: Biochem. Mol. Biol. 114, 107–132 (1996).

    Article  CAS  Google Scholar 

  3. Q. Hamid, D. R. Springall, V. Riveros-Moreno, et al., Induction of nitric oxide synthase in asthma. Lancet 342, 1510–1513 (1993).

    Article  PubMed  CAS  Google Scholar 

  4. A. Nadeem, S. K. Chhabra, A. Masood, and H. G. Raj, Increased oxidative stress and altered levels of antioxidants in asthma, J. Allergy Clin. Immunol. 111, 72–78 (2003).

    Article  PubMed  CAS  Google Scholar 

  5. S. A. Kharitonov, D. Yates, D. R. Springall, et al., Exhaled nitric oxide is increased in asthma, Chest 107, 156–157 (1995).

    Google Scholar 

  6. L. M. van Den Toorn, J. B. Prins, S. E. Overbeek, H. C. Hoogsteden, and J. C. de Jongste, Adolescents in clinical remission of atopic asthma have elevated exhaled nitric oxide levels and bronchial hyper responsiveness. Am. J. Respir. Crit. Care Med. 162, 953–957 (2000).

    Google Scholar 

  7. P. Lund and D. Wiggins, The ornithin requirement of urea synthesis, Biochem. J. 239, 773–776 (1986).

    PubMed  CAS  Google Scholar 

  8. J. E. Albina, C. D. Mills, W. L. Henry, and M. D. Caldwell, Temporal expression of different pathways of l-arginine metabolism in healing wounds, J. Immunol. 144, 3877–3880 (1994).

    Google Scholar 

  9. C. I. Chang, J. C. Liao, and I. Kuo, Arginase modulates nitric oxide production in activated macrophages, Am. J. Physiol. 247, 342–348 (1998).

    Google Scholar 

  10. H. Hirsch-Kolb, J. H. Kolb, and D. M. Greenberg. Nuclear magnetic resonance studies of manganese binding of rat liver arginase, J. Biol. Chem. 246, 395–401 (1971).

    PubMed  CAS  Google Scholar 

  11. A. Soutar, A. Seaton, and K. Brown, Bronchial reactivity and dietary antioxidants, Thorax 52, 166–170 (1997).

    Article  PubMed  CAS  Google Scholar 

  12. W. R. Tracey, J. Tse, and G. Carter, Lipopolysaccharide-induced changes in plasma nitrite and nitrate concentrations in rats and mice: pharmacological evaluation of nitric oxide synthase inhibitors, J. Pharmacol. Exp. Ther. 272, 1011–1015 (1995).

    PubMed  CAS  Google Scholar 

  13. J. W. Geyer and D. Dabich, Rapid method for determination of arginase activity in tissue homogenates, Anal. Biochem. 39, 412–417 (1971).

    Article  PubMed  CAS  Google Scholar 

  14. L. M. Silverman and R. H. Christenson, Amino acid and proteins, in Textbook of Clinical Chemistry, C. A. Burtis and E. R. Ashwood, eds., Saunders, Philadelphia, pp. 695–697 (2000).

    Google Scholar 

  15. D. Milde, O. Novak, V. Stuka, K. Vyslouil, and J. Machaek, Plasma levels of selenium, manganese, copper, and iron in colorectal cancer patients. Biol. Trace. Element Res. 79, 107–114 (2001).

    Article  CAS  Google Scholar 

  16. P. J. Barnes and M. G. Belvisi, Nitric oxide and lung disease, Thorax 487, 1034–1043 (1993).

    Google Scholar 

  17. P. J. Barnes, NO or no NO in asthma, Thorax 51, 218–220 (1996).

    Article  PubMed  CAS  Google Scholar 

  18. M. Högman, C. G. Frostell, H. Hednström, and G. Hedenstriena, Inhalation of nitric oxide modulates adult human bronchial tone, Am. Rev. Respir. Dis. 148, 1474–1478 (1993).

    PubMed  Google Scholar 

  19. K. Sade and S. Kivity, Nitric oxide in asthma, Isr. Med. Assoc. J. 4, 196–199 (2002).

    PubMed  CAS  Google Scholar 

  20. K. Alving, C. Furnhem, and J. M. Lundberg, Pulmonary effects of endogenous and exogenous nitric oxide in the pig: relations to cigarette, Br. J. Pharmacol. 110, 739–746 (1993).

    PubMed  CAS  Google Scholar 

  21. H. P. Kuo, S. Liu, and P. J. Barnes, The effect of endogenous nitric oxide on neurogenic plasma exudation in guinea-pig airway. Eur. J. Pharmacol. 22, 385–388 (1992).

    Google Scholar 

  22. R. Radi, J. S. Beckman, K. M. Bush, and B. A. Freeman, Peroxynitrite-induced membrane lipid peroxidation: cytotoxic potential of superoxide and nitric oxide, Arch. Biochem. Biophys. 288, 481–487 (1991).

    Article  PubMed  CAS  Google Scholar 

  23. S. A. Lipton, Y. B. Choi, Z. H. Pan, et al., A redox-based mechanism for the neuroprotective and neurodescructive effects of nitric oxide and related nitroso-compounds, Nature 64, 626–632 (1993).

    Article  Google Scholar 

  24. P. J. Barnes and F. Y. Liew, Nitric oxide and asthmatic inflammation. Immunol. Today 16, 128–130 (1995).

    Article  PubMed  CAS  Google Scholar 

  25. F. H. Guo, S. A. Comhair, S. Zheng, et al., Molecular mechanisms of increased nitric oxide (NO) in asthma: evidence for transcriptional and post-translational regulation of NO synthesis. J. Immunol. 164, 5970–5980 (2000).

    PubMed  CAS  Google Scholar 

  26. A. A. Brock, S. A. Chapman, E. A. Ulman, and G. Wu, Dietary manganese deficiency decreases rat hepatic arginase activity, J. Nutr. 124, 340–344 (1994).

    PubMed  CAS  Google Scholar 

  27. J. L. Boucher, C. Moali, and J. P. Tenu, Nitric oxide biosynthesis, nitric oxide synthase inhibitors an arginase competition for l-arginine utilization, Cell. Mol. Life Sci. 55, 1015–1028 (1999).

    Article  PubMed  CAS  Google Scholar 

  28. M. Mori and T Gotoh, Regulation of nitric oxide production by arginine metabolic enzymes, Biochem. Biophys. Res. Commun. 275, 715–719 (2000).

    Article  PubMed  CAS  Google Scholar 

  29. A. Jahnsen, S. Lewis, V. Catell, and H. T. Cook, Arginase is major pathway ofl-arginine metabolism in nephritic glomeruli, Kidney Int. 42, 1107–1112 (1992).

    Article  Google Scholar 

  30. I. Durak, H. S. Ozturk, S. Elgun, M. Y. B. Cimen, and S. Yalcin, Erythrocyte nitric oxide metabolism in patients with chronic renal failure. Clin. Nephrol. 55, 460–464 (2001).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kocyigit, A., Zeyrek, D., Keles, H. et al. Relationship among managanese, arginase, and nitric oxide in childhood asthma. Biol Trace Elem Res 102, 11–18 (2004). https://doi.org/10.1385/BTER:102:1-3:011

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/BTER:102:1-3:011

Index Entries

Navigation