Skip to main content
Log in

Effect of lead ions on rat erythrocyte purine content

  • Original Articles
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The influence of short-term exposure to lead on the energetic status of erythrocytes in rats is reported in this study. The male Wistar rats selected for this study drank water containing 1% lead(II) acetate and/or intraperitoneal injections of 1 or 2 mg/kg body wt every 4 d starting on the eighth of the experiment, over a period of 1 mo.

The whole-blood lead concentration measured after 4 wk was 1.51–35.31 μg/dL. The concentrations of adenosine, adenosine triphosphates, diphosphates, and monophosphates (ATP, ADP, and AMP), guanine triphosphates, diphosphates and monophosphates (GTP, GDP, and GMP), guanosine (Guo), inosine (Ino), inosine monophosphate (IMP), hypoxantine (Hyp), and nicotinamide dinucleotide and its phosphate (NAD+ and NADP+) were determined by high-performance liquid chromatography (HPLC).

The mean concentrations of ATP, GTP, NAD+, and NADP+ and those of adenylate (AEC) and guanylate (GEC) were significantly reduced in erythrocytes from the animals exposed to lead when compared to untreated controls. These results suggest that a lead ion disrupts the erythrocyte energy pathways. The decreases of NAD+ and ATP could be used as an indicator of the extent of exposure to low levels of lead.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Institute of Environmental Protection (IEP), Element cycling in the environment, V International Scientific—Technical Conference, Warsaw (2003).

  2. World Health Organization (WHO), Inorganic Lead, Environmental Health Criteria, 165, WHO, Geneva (1995).

    Google Scholar 

  3. T. Dutkiewicz, Report of the Polish Academy of Science, Environmental Toxicology Comittee, Bromat. Chem. Toksykol. 21, 4–20 (1998).

    Google Scholar 

  4. J. Senczuk, Toxicology, 2nd ed., PZWL, Warsaw (2002).

    Google Scholar 

  5. E. Bodak, R. Kolacz, and Z. Dobrzanski, Heavy metals-exposure conditions and defense mechanisms in animals, Med. Weter. 52, 619–626 (1996).

    Google Scholar 

  6. M. L. Caspers, and G. J. Sieger, Inhibition by lead of human erythrocyte (Na+/K+) adenosine triphosphatase associated with binding of 210Pb to membrane fragments, Biochem. Biophys. Acta 600, 27–35 (1980).

    Article  PubMed  CAS  Google Scholar 

  7. Center for Disease Control (CDC), Preventing Lead Poisoning in Young Children, United States Department of Health and Human Services, Department of Health and Human Services, Atlanta, GA (1991).

    Google Scholar 

  8. T. Dutkiewicz, and J. Swiadczak, Lead in environment, Med. Pr. 44, 53–77 (1993).

    PubMed  CAS  Google Scholar 

  9. N. D. Vaziri, C. Y. Lin, F. Farmand, et al., Superoxide dismutase, catalase, glutathione peroxidase and NADPH oxidase in lead-induced hypertension, Kidney Int. 63, 186–194 (2003).

    Article  PubMed  CAS  Google Scholar 

  10. J. Attri, V. Dhawan, S. Mahmood, et al., Effect of vitamin C supplementation on oxidative DNA damage in an experimental model of lead-induced hypertension. Ann. Nutr. Metab. 47, 294–301 (2003).

    Article  PubMed  CAS  Google Scholar 

  11. S. V. Faraone, and T. Wilens, Does stimulant treatment lead to substance use disorders? J. Clin. Psychiatry. 64 (Suppl. 11), 9–13 (2003).

    PubMed  CAS  Google Scholar 

  12. Q. Zhang, G. R. Bratton, R. K. Agarwal, et al., Lead-induced cell signaling cascades in GT1–7 cells, Brain Res. Bull. 61, 207–217 (2003).

    Article  PubMed  CAS  Google Scholar 

  13. C. Li, R. W. Peoples, and F. F. Weight, Mg 2+ inhibition of ATP-activated current in rat nodose ganglion neurons. J. Neurophysiol. 77, 3391–3395 (1997).

    PubMed  CAS  Google Scholar 

  14. Y. W. Lin, S. M. Chuang, and J. L. Yang, Persistent activation of ERK1/2 by lead acetate increases nucleotide excision repair synthesis and confers anti-cytotoxicity and antimutagenicity, Carcinogenesis 24, 53–61 (2003).

    Article  PubMed  Google Scholar 

  15. A. M. Sharifi, S. Baniasadi, M. Jorjani, et al., Investigation of acute lead poisoning on apoptosis in rat hippocampus in vivo, Neurosci. Lett. 329, 45–48 (2002).

    Article  PubMed  CAS  Google Scholar 

  16. L. Struzynska, G. Sulkowski, A. Lenkiewicz, et al., Lead stimulates the glutathione system in selective regions of rat brain, Folia Neuropathol. 40, 203–209 (2003).

    Google Scholar 

  17. C. Taupeau, J. Poupon, D. Treton, et al., Lead reduces messenger RNA and protein levels of cytochrome p450 aromatase and estrogen receptor beta in human ovarian granulosa cells. Biol. Reprod. 68, 1982–1988 (2003).

    Article  PubMed  CAS  Google Scholar 

  18. K. Wozniak, and J. Blasiak, In vitro genotoxicity of lead acetate: induction of single and double DNA strand breaks and DNA-protein cross-links, Mutat. Res. 535, 127–139 (2003).

    PubMed  CAS  Google Scholar 

  19. S. W. Yun, and S. Hoyer, Effects of low-level lead on glycolytic and pyruvate dehydrogenase of rat brain in vitro: relevance to sporadic Alzheimer's disease?, J. Neural Transm. 107, 355–368 (2000).

    Article  PubMed  CAS  Google Scholar 

  20. T. J. B. Simons, Passive transport and binding of lead by human red blood cells, J. Physiol. 378, 267–286 (1986).

    PubMed  CAS  Google Scholar 

  21. T. J. B. Simons, Lead transport and binding by human erythrocytes in vitro, Pflugers Arch. 423, 307–313 (1993).

    Article  PubMed  CAS  Google Scholar 

  22. T. J. B. Simons, Lead-calcium interactions in cellular lead toxicity, Neurotoxicology 14, 97–102 (1993).

    Google Scholar 

  23. I. Baranowska-Bosiacka, A. J. Hlynczak, and B. Machalinski, The impact of lead ions on metabolism of erythrocytes, Med. Pr. 1, 60–65 (2000).

    Google Scholar 

  24. A. J. Simon, and E. S. Hudes, Relationship of ascorbic acid to blood lead levels, JAMA 281, 2289–2293 (1999).

    Article  PubMed  CAS  Google Scholar 

  25. A. Skoczynska, and R. Smolik, The effects of combined exposure to lead and cadmium on serum lipids and lipid peroxides level in rats, Int. J. Occup. Med. Environ. Health. 7, 263–271 (1994).

    PubMed  CAS  Google Scholar 

  26. Z. B. Din, and J. M. Brooks Use of adenylate energy charge as a physiological indicator in toxicity experiments, Bull. Environ. Contamin Toxicol. 36, 1–8 (1986).

    Article  CAS  Google Scholar 

  27. M. Grabowska, and M. Guminska, The effect of lead on lactate formation, ATP level and membrane ATPase activities in human erythrocytes in vitro, Int. J. Occup. Med. Environ. Health 9, 265–274 (1996).

    PubMed  CAS  Google Scholar 

  28. M. Hirata, T. Yoshida, K. Miyajima, et al., Correlation between lead in plasma and other indicators of lead exposure among lead-exposed workers, Int. Arch. Occup. Environ. Health 68, 58–63 (1995).

    Article  PubMed  CAS  Google Scholar 

  29. R. Harkness, R. J. Simmonds, and S. B. Coade, Purine transport and metabolism in man: the effect of exercise on concentration of purine bases, nucleosides and nucleotides in plasma, urine, leukocytes and erythrocytes, Clin. Sci. 64, 333–340 (1983).

    PubMed  CAS  Google Scholar 

  30. I. A. Berghdal, A. Schutz, L. Gerhardsson, et al., Lead concentrations in plasma, urine and whole blood, Scand. J. Work Environ. Health. 23, 359–363 (1997).

    Google Scholar 

  31. J. Brandys (ed.), Toxicology, Jagiellonian University Press, Krakow (1999).

    Google Scholar 

  32. K. Kuliczkowski, The effect of lead on red cells, Med. Pr. 31, 143–147 (1980).

    Google Scholar 

  33. J. R. Behari, Determination of lead in blood, Int. J. Environ. Anal. Chem. 10, 149–154 (1981).

    PubMed  CAS  Google Scholar 

  34. R. Smolenski, D. R. Lachno, S. J. M. Ledingham, et al., Determination of sixteen nucleotides, nucleosides and bases using high-performance liquid chromatography and its application to the study of purine metabolism in hearts for transplantation, J. Chromatogr. 527, 414–420 (1990).

    Article  PubMed  CAS  Google Scholar 

  35. F. I. Ataullakhanov, S. V. Komarova, and V. M. Vitvitsky, A possible role of adenylate metabolism in human erythrocytes: simple matematical model., J. Theor. Biol. 179, 75–86 (1996).

    Article  PubMed  CAS  Google Scholar 

  36. F. I. Ataullakhanov, S. V. Komarova, M. V. Martynov, et al., A possible role of adenylate metabolism in human erythrocytes: simple matematical model. 2. Adenylate metabolism is able to improve the erythrocyte volume stabilisation, J. Theor. Biol. 183, 307–316 (1996).

    Article  PubMed  CAS  Google Scholar 

  37. F. I. Ataullakhanov, V. M. Vitvitsky, S. V. Komarova, et al., Energy-dependent processes and adenylate metabolism in human erythrocytes, Biochemistry (Moscow) 61, 197–203 (1996).

    Google Scholar 

  38. D. E. Paglia, W. N. Valentine, M. Nakatani, et al., Mechanisms of adenosine 5 monophosphate catabolism in human erythrocytes. Blood 67, 988–992 (1986).

    PubMed  CAS  Google Scholar 

  39. M. Erecinska, and D. F. Wilson, Regulation of cellular energy metabolism, J. Membr. Biol. 70, 1–14 (1982).

    Article  PubMed  CAS  Google Scholar 

  40. Z. Jozwiak, Adenine nucleotide in the regulation of erythrocyte structure and metabolism, Post. Hig. Med. Dosw. 39, 1084–1085 (1985).

    Google Scholar 

  41. A. Laurence, J. A. Duley, H. A. Simonds, et al., Characteristic changes in erythrocyte nucleotites in haemolytic anemia with basophilic stippling of differeing aetiology, Cell. Mol. Lett. 4, 406 (1999) (abstract).

    Google Scholar 

  42. K. R. Tanaka, and C. R. Zerez, Red cells enzymopathies of glycolytic pathway, Semin. Hematol. 27, 165–185 (1990).

    PubMed  CAS  Google Scholar 

  43. D. E. Pagliuca, G. L. Mufti, D. Baldwin, et al., Lead poisoning: clinical, biochemical and haematological aspects of recent outbreak, J. Clin. Pathol. 43, 277–281 (1990).

    PubMed  CAS  Google Scholar 

  44. S. Regunathan, and R. Sundaresan, Pyruvate metabolism in the brain of young rats intoxicated with organic and inorganic lead. J. Neurochem. 43, 1346–1351 (1984).

    Article  PubMed  CAS  Google Scholar 

  45. N. E. Lachant, A. Tomoda, and K. R. Tanaka, Inhibition of pentose phosphate shut by lead: potential mechanism for hemolysis in lead poisoning, Blood 63, 518–524 (1984).

    PubMed  CAS  Google Scholar 

  46. D. A. Cory-Slechta, B. Weiss, and C. Cox, Delayed behavioraltoxicity of lead with increasing exposure concentration, Toxicol. Appl. Pharmacol. 71, 342–352 (1983).

    Article  PubMed  CAS  Google Scholar 

  47. I. Baranowska-Bosiacka, and A. J. Hlynczak, The effect of lead ions on the energy metabolism of human erythrocytes in vitro, Comp. Biochem. Physiol. C: Toxicol. Pharmacol. 134, 403–416. (2003).

    Article  CAS  Google Scholar 

  48. K. Soltaninejad, A. Kebriaeezadeh, B. Minaiee, et al., Biochemical and ultrastructural evidences for toxicity of lead through free radicals in rat brain, Hum. Exp. Toxicol. 22, 417–423 (2003).

    PubMed  CAS  Google Scholar 

  49. S. Tadashi, A. Takaharu, and U. Koich, Accumulation of erythrocyte nucleotides and their pattern in lead workers, Arch. Environ. Health. 45, 273–277 (1990).

    Article  Google Scholar 

  50. D. E. Paglia, W. N. Valentine, M. Nakatani, et al., Mechanisms of adenosine 5 monophosphate catabolism in human erythrocytes, Blood 67, 988–992 (1986).

    PubMed  CAS  Google Scholar 

  51. H. Holzhutter, G. Jacobasch, and A. Bisdorff, Matemathical modelling of metabolic pathways affected by enzyme deficiency. A mathematical model of glicolysis in normal and pyruvate kinase-deficient red blood cells, Eur. J. Biochem. 149, 101–111 (1985).

    Article  PubMed  CAS  Google Scholar 

  52. C. R. Zerez, and K. R. Tanaka, Impaired nicotinamide adenine dinucleotide synthesis in pyruvate kinase deficient human erythrocytes. A mechanism for decreased total NAD content and possible secondary cause of hemolysis. Blood 69, 999–1005 (1987).

    PubMed  CAS  Google Scholar 

  53. C. R. Zerez, M. D. Wong, and K. R. Tanaka, Partial purification and properties of nicotinamide adenine dinucleotide synthase from human erythrocytes: evidence that enzyme activity is a sensitive indicator of lead exposure, Blood 75, 1576–1582 (1990).

    PubMed  CAS  Google Scholar 

  54. A. Dabrowska, Red cell pyruvate kinase maybe controls of oxygen delivery from erythrocyte, Post. Hig. Med. Dosw. 51, 305–318 (1997).

    CAS  Google Scholar 

  55. B. Dobrowska-Bouta, L. Struzynska, and U. Rafalowska, Does lead provoke the peroxidation process in rat brain synaptosomes?, Mol. Chem. Neuropathol. 29, 127–139 (1996).

    Article  Google Scholar 

  56. A. Jedryczko, Involvement of free radicals in lead poisoning, Med. Pr 2, 171–175 (1994).

    Google Scholar 

  57. A. Kraus, H. P. Roth, and M. Kirchgessner, Influence of vitamin C, vitamin E and β-carotene on the osmotic fragility and the primary antioxidant system of erythrocytes in zinc-deficient rats, Arch. Anim. Nutr. 50, 257–269 (1997).

    CAS  Google Scholar 

  58. S. B. Maggirwar, D. N. Dhanraj, S. M. Somani, et al., Adenosine acts as endogenous activator of the cellular antioxidant defence system, Biochem. Biophys. Res. Commun. 201, 508–515 (1994).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baranowska-Bosiacka, I., Hlynczak, A.J. Effect of lead ions on rat erythrocyte purine content. Biol Trace Elem Res 100, 259–273 (2004). https://doi.org/10.1385/BTER:100:3:259

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/BTER:100:3:259

Index Entries

Navigation