Skip to main content
Log in

Role of zinc on lipid peroxidation and antioxidative enzymes in intestines of ethanol-fed rats

  • Original Articles
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

This study was undertaken to investigate the effects of zinc on lipid peroxidation and various antioxidative enzymes in the intestines of male Wistar rats fed on ethanol. It was observed that NADPH-dependent lipid peroxidation (LP) was significantly increased upon ethanol treatment for 4 and 8 wk. The concentraton of glutathione as well as the activities of catalase, superoxide dismutase (SOD), glutathione peroxidase (GPx), and glutathione reductase (GR) were also found to be significantly increased upon ethanol feeding at all of the treatment intervals. The glutathione levels were found to be further elevated upon combined zinc and ethanol treatments. Interestingly, the administration of zinc to ethanol-fed rats was able to bring down the elevated levels of LP, catalase, SOD, and GPx, thus indicating the antiperoxidative potential of zinc under such conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. T. Beck and R. P. Dinda, A cute exposure of small intestine to ethanol: effect on morphology and function, Dig. Dis. Sci. 26, 817 (1981).

    Article  PubMed  CAS  Google Scholar 

  2. J. Persson, Alcohol and small intestine, Scand. J. Gastroenterol. 26, 3–15 (1991).

    PubMed  CAS  Google Scholar 

  3. J. Kaur, J. P. Nagpaul, and A. Mahmood, Expression of brush border enzymes in ethanol fed rat intestine. Indian J. Med. Res. 100, 289–294 (1994).

    PubMed  CAS  Google Scholar 

  4. R. Nordmann, C. Riviere, and H. Rouch, Ethanol-induced lipid peroxidation and oxidative stress in extra hepatic tissues, Alcohol Alcohol. 25, 231–237 (1990).

    PubMed  CAS  Google Scholar 

  5. K. M. Hambidge, C. E. Casey, and N. F. Krebs, Zinc, in Trace Elements in Humans and Animal Nutrition, 5th edn. W. Mentz and F. L. Orlando, eds., Academic, New York, Vol. 2, pp. 1–137 (1986).

    Google Scholar 

  6. K. Mengel and E. A. Kirkby, Zinc in crop nutrition, in Principles of Plant Nutrition, K. Mengel and E. A. Kirkby, eds., Switzerland International Potash Institute, Wolblanfen, pp. 533–535 (1987).

    Google Scholar 

  7. M. L. Failla, Zinc: functions and transport of microorganisms, in Micro-organisms and Minerals, E. D. Weinberg, ed., Marcel Dekker, New York, pp. 159–214 (1977).

    Google Scholar 

  8. E. F. Gordon, R. C. Gordon, and D. P. Passal, Zinc metabolism: basic, clinical, and behavioral aspects. J. Pediatr. 99, 341–349 (1987).

    Google Scholar 

  9. I. E. Dreost and E. J. Patrick, Zinc, ethanol and lipid peroxidation in adult and fetal rats, Biol. Trace Element Res., 14, 179–191 (1987).

    Google Scholar 

  10. D. Dhawan and A. Goel, Protective role of zinc on rat liver function in long term toxicity induced by carbon tetrachloride. J. Trace Elements Exp. Med. 7, 1–9 (1994).

    CAS  Google Scholar 

  11. D. Dhawan and A. Goel, Further evidence for zinc as hepatopretective agent in rat liver toxicity, Exp. Mol. Pathol. 63, 110–117 (1995).

    Article  PubMed  CAS  Google Scholar 

  12. C. H. Cho, C. W. Ogle, S. H. Wong, et al., Effects of zinc sulfate on ethanol- and indomethacin-induced ulceration and changes in prostaglandin E2 and histamine levels in the rat gastric glandular mucosa, Digestion 32, 288–295 (1985).

    Article  PubMed  CAS  Google Scholar 

  13. S. H. Wong, C. H. Cho, and C. W. Ogle, Protection by zinc sulfate against ethanol-induced ulceration: preservation of the gastric mucosal barrier, Pharmacology 33, 94–102 (1986).

    Article  PubMed  CAS  Google Scholar 

  14. A. Pathak, A. Mahmood, R. Pathak, et al., Effect of zinc on hepatic lipid peroxidation and antioxidative enzymes in ethanol fed rats, J. Appl. Toxicol., 22(3), 207–210 (2002).

    Article  PubMed  CAS  Google Scholar 

  15. P. Hochstein, K. Nordmann, and L. Ernster, Evidence for the involvement of iron in the ADP-activated peroxidation of lipids in microsomes and mitochondria. Biochem. Biophys. Res. Commun., 14, 323–328 (1964).

    Article  PubMed  CAS  Google Scholar 

  16. M. J. Moron, J. W. Dipeirre, and K. B. Mannrev, Levels of glutathione, glutathione reductase and glutathione-S-transferase activities in rat lung and liver, Biochim. Biophys. Acta 582, 67–71 (1979).

    PubMed  CAS  Google Scholar 

  17. H. Luck, Catalase, in Methods of Enzymatic Analysis, H. O. Bergmeyer, ed., Academic, New York, pp. 885–893 (1971).

    Google Scholar 

  18. Y. Kono, Generation of superoxide radical during auto-oxidation of hydroxylamine and an assay of superoxide dismutase, Arch. Biochem. Biophys. 186, 189–195 (1978).

    Article  PubMed  CAS  Google Scholar 

  19. S. J. S. Flohe and S. K. Tandon, Assay of glutathione peroxidase, in Methods in Enzymology, S. P. Colowick and N. O. Kaplan, eds., Academic, New York, Vol. 105, pp. 114–126 (1984).

    Google Scholar 

  20. C. H. Williams, Jr. and I. D. Arscott, Glutathione reductase, in Methods in Enzymology, S. P. Colowick and N. O. Kaplan, eds., Academic, New York, Vol. 17, pp. 503–509 (1971).

    Google Scholar 

  21. P. M. Reily, H. J. Schiller, and G. B. Bulkely, Reactive metabolites in shock, in Scientific American Surgery, D. W. Wilmer, et al., eds., Scientific American Inc., New York, pp. 1–32 (1992).

    Google Scholar 

  22. J. R. Mitchell, J. A. Hinson, and S. D. Nelson, Glutathione and drug-induced tissue lesions, in Glutathione: Metabolism and Function, I. M. Arias and W. B. Jacoby, eds., Raven, New York, pp. 357–366 (1976).

    Google Scholar 

  23. E. Altomare, I. Grattagliano, D. Didoma, et al., Gastric and intestinal toxicity in the rat. Effect on glutathione level and role of alcohol and acetaldehyde metabolism, Ital. J. Gastroenterol. Hepatol. 30(1), 82–90 (1988).

    Google Scholar 

  24. M. H. Moghadasian and D. V. Godwin, Ethanol-induced gastrointestinal damage: influence of endogenous antioxidant components and gender, Dig. Dis. Sci., 41(4), 791–797 (1996).

    Article  PubMed  CAS  Google Scholar 

  25. D. A. Barber and S. R. Harris, Oxygen free radicals and antioxidants: a review, Am. Pharmacy NS 34(9), 26–35 (1994).

    Google Scholar 

  26. C. H. Cho, C. J. Pfeiffer, and H. P. Misra, Ethanol and the antioxidant defense in the gastrointestinal tract, Acta Physiol. (Hung.) 80(1–4), 99–105 (1992).

    CAS  Google Scholar 

  27. C. K. Chow, Nutritional influence on cellular antioxidant defense system, Am. J. Clin. Nutr. 32, 1066–1081 (1987).

    Google Scholar 

  28. S. I. Oh, C. I. Kim, H. J. Chun, et al., Chronic ethanol consumption affects glutathione status in rat liver, J. Nutr., 128(4), 758–763 (1998).

    PubMed  CAS  Google Scholar 

  29. K. Haidara, P. Moffat, and F. Denzeau, Metallothionein induction attenuates the effects of glutathione depletors on rat hepatocytes, Toxicol. Sci., 49(2), 297–305 (1999).

    Article  PubMed  CAS  Google Scholar 

  30. I. S. Clarke and E. M. K. Lui, Interaction of metallothionein carbon tetrachloride on the protective effect of zinc on hepatotoxicity, Can. J. Physiol. Pharmacol., 64, 1104–1110 (1986).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pathak, A., Mahmood, A., Pathak, R. et al. Role of zinc on lipid peroxidation and antioxidative enzymes in intestines of ethanol-fed rats. Biol Trace Elem Res 100, 247–257 (2004). https://doi.org/10.1385/BTER:100:3:247

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/BTER:100:3:247

Index Entries

Navigation