Skip to main content
Log in

Analyses of impact of metal ion contamination on carp (Cyprinus carpio L.) gill cell suspensions

  • Original Articles
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The decline in fish population because of water contamination is problem. As a result of direct exposure in water, it has been readily accepted that the gills are the main site of water contamination and toxicity (e.g., metal ions). In the present study, we investigated metal ion contamination on the functional capacity of carp gill cells with antioxidant interactions in an in vitro study. The extent of cellular membrane damage, lipid peroxidation (LPO) (as TBARS levels), and glutathione (GSH) content were investigated after the addition of two metal ion compounds (viz., CuSO4 and HgCl2) in various concentrations (300, 500, 700, 1000, and 3000 μM) to gill cell preparation of the freshwater fish carp (Cyprinus carpio L.) with modulations by bovine serum albumin (BSA) (0.5% and 1.0%) and dimethyl sulfoxide (DMSO) (0.5%) as free-radical scavengers. The Comet assay technique was also performed for the highest concentrations of the two mentioned metal ions as an index of DNA breaks. The outcomes were as follows: (1) Copper and mercury increased the rate of LPO dose dependently (r=+0.995 and r=+0.993, respectively; p<0.001), but the GSH content was only marginally affected (r=−0.787 and r=−0.844, respectively; p<0.05). (2) Depletion of GSH molecules by copper had a wider range than mercury. (3) In the highest concentration of metal ions (3000 μM), both DMSO and 1.0% BSA showed a pro-oxidative potential to elevate the levels of TBARS (p<0.001), but for other concentrations when supplemented with three scavengers, a fall in the levels of the latter was found. (4) The addition of 1.0% BSA to medium containing 3000 μM of metal ions caused a significant decline in GSH content (p<0.01). (5) Copper and mercury could cause a high rate of DNA breaks (single stranded) in carp gill cell suspensions as a Comet appearance.

These findings indicate that copper and mercury have a deleterious influence on membrane integrity and GSH content in a relatively dose-dependent manner. The complexes of metal ions and thiol (−SH) residues of cell proteins could also act as a potential cell toxicant leading to disturbances in cell functions causing cell death. DNA fragmentation is frequent in metal ion contamination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. Karan, S. Vitorovic, V. Tutundzic, et al., Functional enzymes activity and gill histology of carp after copper sulfate exposure and recovery, Ecotoxicol. Environ. Safety 40(1/2), 49–55 (1998).

    Article  PubMed  CAS  Google Scholar 

  2. D. J. B. Dalzell and N. A. A. Macfarlane, The toxicity of iron to brown trout and effects on the gills: a comparison of two grades of iron sulphate, J. Fish Biol. 55, 301–315 (1999).

    Article  CAS  Google Scholar 

  3. C. Hayes, R. G. Clark, R. F. Stent, et al., The control of algae by chemical treatment in a eutrophic water supply reservoir, J. Inst. Water Eng. Sci. 35, 149–162 (1984).

    Google Scholar 

  4. K. Radhakrishnaiah, A. Suresh, and B. Sivaramkrishna, Effect of sublethal concentration of mercury and zinc on the energetics of a freshwater fish Cyprinus carpio (Linnaeus), Acta Biol. Hung. 44(4), 375–385 (1993).

    PubMed  CAS  Google Scholar 

  5. A. A. Radi and B. Matkovics, Effects of metal ions on the antioxidant enzyme activities, protein content and lipid peroxidation of carp tissues, Comp. Biochem. Physiol. C 90(1), 69–72 (1988).

    Article  PubMed  CAS  Google Scholar 

  6. D. Mukherjee, V. Kumar, and P. Chakraborti, Effect of mercuric chloride and cadmium chloride on gonadal function and its regulation in sexually mature common carpCyprinus carpio, Biomed. Environ. Sci. 7(1), 13–24 (1994).

    PubMed  CAS  Google Scholar 

  7. A. Akahori, Z. Jozwiak, T. Gabryelak, et al., Effect of zinc on carp (Cyprinus carpio L.) erythrocytes, Comp. Biochem. Physiol. C 123, 209–215 (1999).

    Article  PubMed  CAS  Google Scholar 

  8. B. Halliwel and J. M. C. Gutteridge, Oxygen toxicity, oxygen radicals, transition metals and disease, Biochem. J. 219, 1–14 (1984).

    Google Scholar 

  9. R. K. Sharma and A. Agarwal, Role of reactive oxygen species in male infertility, Urology 98(6), 835–850 (1996).

    Article  Google Scholar 

  10. A. Meister and M. E. Anderson, Glutathione, Annu. Rev. Biochem. 52, 711–760 (1983).

    Article  PubMed  CAS  Google Scholar 

  11. P. J. Hissin and R. Hilf, A fluorometric method for determination of oxidized and reduced glutathione in tissues, Anal. Biochem. 74, 214–226 (1976).

    Article  PubMed  CAS  Google Scholar 

  12. J. Matta, R. Hanger, and T. Tosteson, Heavy metal, lipid peroxidation and ciguatera toxicity in the liver of the carbibean barracuda (Sphyraena, barracuda), Biol. Trace. Element Res. 70(1), 69–79 (1999).

    CAS  Google Scholar 

  13. R. J. K. Anand, M. Arabi, K. S. Rana, et al., Role of vitamins C and E with GSH in checking the peroxidative damage to human ejaculated spermatozoa, Int. J. Urol. 7(Suppl.), S1-S98 (2000).

    Google Scholar 

  14. M. Lees, and J. Paxman, Modification of Lowry procedure for the analysis of proteolipid protein, Anal. Biochem. 47, 184–192 (1972).

    Article  PubMed  CAS  Google Scholar 

  15. H. Ohkawa, N. Ohishi, and K. Yagi, Assay for lipid peroxides in animal tissues by thio-barbituric acid reaction, Anal. Biochem. 95, 351–358 (1979).

    Article  PubMed  CAS  Google Scholar 

  16. J. Sedlak, and R. H. Lindsay, Estimation of total, protein-bound and nonprotein sulfhydryl groups in tissue with Ellman's reagent, Anal. Biochem. 25, 192–205 (1968).

    Article  PubMed  CAS  Google Scholar 

  17. N. P. Singh, M. T. McCoy, R. R. Tice, et al., A simple technique for quantitation of low levels of DNA damage in individual cells, Exp. Cell. Res. 175, 184–191 (1988).

    Article  PubMed  CAS  Google Scholar 

  18. A. Suresh, B. Sivaramakrishna, P. C. Victoriamma, et al., Shifts in protein metabolism in some organs of freshwater fish, Cyprinus carpio under mercury stress, Biochem. Int. 24(2), 379–389 (1991).

    PubMed  CAS  Google Scholar 

  19. V. Z. Kurant, O. B. Stolyar, R. B. Balaban, et al., Effect of copper and lead on the nucle-oproteins and thiols in tissues of carp (Cyprinus carpio L.), Society for Experimental Biology Annual Meeting, 1997 (online).

  20. J. G. Alvarez, and B. T. Storey, Differential incorporation of fatty acids into and peroxidative loss of fatty acids from phospholipid of human spermatozoa, Mol. Reprod. Dev. 42, 334–346 (1995).

    Article  PubMed  CAS  Google Scholar 

  21. C-H Huang, H. O. Hutlin, and S. S. Jafar, Some aspects of Fe2+-catalyzed oxidation of fish sarcoplasmic reticular lipid, J. Agric. Food Chem. 41, 1886–1892 (1993).

    Article  CAS  Google Scholar 

  22. B. Halliwel, Oxidation of low-density lipoproteins: questions of initiation, propagation, and the effect of antioxidants, Am. J. Clin. Nutr. 61(Suppl.), 670S-677S (1995).

    Google Scholar 

  23. K. Eichenberger, P. Bohni, K. H. Winterholter, et al., Microsomal lipid peroxidation causes an increase in the order of membrane lipid domain, FEBS Lett. 142, 59–65 (1982).

    Article  PubMed  CAS  Google Scholar 

  24. I. Yuli, W. Wilbrandt, and M. Shinitzky, Glucose transport through cell membrane of modified lipid fluidity, Biochemistry 20, 4250–4258 (1981).

    Article  PubMed  CAS  Google Scholar 

  25. C. V. Smith, D. P. Jones, T. M. Guentiner, et al., Compartmentation of glutathione: implications for the study of toxicity and disease, Toxicol. Appl. Pharmacol. 140, 1–12 (1996).

    Article  PubMed  CAS  Google Scholar 

  26. M. K. Cha and L. H. Kim, Glutathione-link thiol peroxidase activity of human serum albumin—a possible antioxidant role of serum albumin in blood plasma, Biochem. Biophys. Res. Commun. 222, 619–625 (1996).

    Article  PubMed  CAS  Google Scholar 

  27. M. Tien, J. R. Bucher, and S. D. Aust, Thiol-dependent lipid peroxidation, Biochem. Biophys. Res. Commun. 107(1), 279–285 (1982).

    Article  PubMed  CAS  Google Scholar 

  28. S. N. Loh, L. A. Dethlefsen, and R. C. Fahey, Nuclear thiols: technical limitations on the determination of endogenous nuclear glutathione and the potential importance of sulfhydryl proteins, Radiat. Res. 121, 98–108 (1990).

    Article  PubMed  CAS  Google Scholar 

  29. R. A. Britten, J. A. Green, and H. M. Winenius, The relationship between nuclear glutathione levels and resistance to mephlalan in human ovarian tumor cells, Biochem. Pharmacol. 41, 647–649 (1991).

    Article  PubMed  CAS  Google Scholar 

  30. T. Guecheva, J. A. Henriques, and B. Erdtmann, Genotoxic effects of copper sulphate in freshwater planarian in vivo studied with the single-cell gel test (Comet assay), Mutat. Res. 497(1–2), 19–27 (2001).

    PubMed  CAS  Google Scholar 

  31. L. Bucio, C. Garcia, V. Souza, et al., Uptake, cellular distribution and DNA damage produced by mercuric chloride in a human fetal hepatic cell line, Mutat. Res. 423(1–2), 65–72 (1999).

    PubMed  CAS  Google Scholar 

  32. S. J. Stohs and D. Baghachi, Oxidative mechanisms in the toxicity of metal ions, Free Radical Biol. Med. 18(2), 321–326 (1995).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arabi, M. Analyses of impact of metal ion contamination on carp (Cyprinus carpio L.) gill cell suspensions. Biol Trace Elem Res 100, 229–245 (2004). https://doi.org/10.1385/BTER:100:3:229

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/BTER:100:3:229

Index Entries

Navigation