Skip to main content
Log in

Chromium, iron, selenium, and zinc levels in serum from preschool children in central Taiwan

  • Original Articles
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The elemental levels of chromium, iron, selenium, and zinc in the sera from 81 preschool children (3–6 yr old) who lived in central Taiwan were determined. One-half of them, at 12 kindergartens in two metropolitan precincts, lived in the Taichung city (TCPC) and the rest lived in 10 urban townships (TUTPC), which had been randomly selected. A blood sample was collected from each, subject; sera were freeze-dried, and chromium, iron, selenium, and zinc were measured using instrumental neutron activation analysis (INAA). Results were considered in relation, to environmental conditions and the sex and age of the preschool children. The mean concentrations of zinc serum in the TCPC group were statistically significantly higher than those of TUTPC, group (p<0.01). The iron sera from girls are higher than those of boys, in both TCPC and TUTPC groups, and show a statistically significant difference (p<0.05) in the TUTPC group. In the TCPC group, Cr contents were positively correlated with age. Elemental concentrations of sera were compared across ages and country.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Mertz, The essential trace elements, Science 213, 1332–1338 (1981).

    Article  PubMed  CAS  Google Scholar 

  2. K. H. Brown, J. M. Peerson, J. Rivera, et al., Effect of supplemental zinc on the growth and serum zinc concentrations of prepubertal, children: a meta-analysis of randomized controlled trial, Am. J. Clin. Nutr. 75, 1062–1071 (2002).

    PubMed  CAS  Google Scholar 

  3. N. A. Golubkina and G. Alfthan, Selenium status of pregnant women and newborns in the former Soviet Union, Biol. Trace Element Res. 89, 13–23 (2002).

    Article  CAS  Google Scholar 

  4. T. Lech, Lead, copper, zinc, and magnesium levels in hair of children and young people with some disorders of the ostemuscular articular system, Biol. Trace Element Res. 89, 111–125 (2002).

    Article  CAS  Google Scholar 

  5. V. A. Maihara, M. B. A. Vasconcellos, M. B. Cordeiro, et al., Estimate of toxic element intake in diets of pre-school children and elderly collected by duplicate portion sampling, Food Addit. Contamin. 15(7), 782–788 (1998).

    CAS  Google Scholar 

  6. B. Nowak, Contents and relationship of elements in human hair for, a non-industrialized population in Poland, Sci. Total Environ. 209, 59–68 (1998).

    Article  PubMed  CAS  Google Scholar 

  7. M. T. Ponzetta, S. Nardi, I. Calliari, et al., Trace elements in human scalp hair and soil in Irian Jaya, Biol. Trace Element Res. 62, 199–212 (1998).

    CAS  Google Scholar 

  8. K. Chaudhary, W. D. Ehmann, K. Rengan, et al., Trace element correlations with age and sex in human fingernails, J. Radional. Nucl. Chem. Articles 195(1), 51–56 (1995).

    Article  CAS  Google Scholar 

  9. Z. Zachwieja, J. Chlopicka, M. Schlegel-Zawadzka, et al., Evaluation of zinc content in children's hair, Biol. Trace Element Res. 47, 141–145 (1995).

    CAS  Google Scholar 

  10. W. Ashraf, M. Jaffar, and D. Mohammad, Age and sex dependence of selected trace metals in scalp hair of urban population of Pakistan, Sci. Total. Environ. 151, 227–233 (1994).

    Article  PubMed  CAS  Google Scholar 

  11. H. M. Huang, P. L. Leung, D. Z. Sun, et al., Hair and serum calcium, iron, copper, and zinc levels during normal pregnancy at three trimesters, Biol. Trace Element Res. 69, 111–119 (1990).

    Google Scholar 

  12. H. W. Kuo, S. F. Chen, C. C. Wu, et al., Serum and tissue trace elements on patients with breast cancer in Taiwan, Biol. Trace Element Res. 64, 1–11 (2000).

    Google Scholar 

  13. A. S. Prasad and D. Oberleas, Thymidine-kinase activity and incorporation of thymidine into DNA in zinc deficiency tissue, J. Lab. Clin. Med. 83, 634–639 (1974).

    PubMed  CAS  Google Scholar 

  14. Department of Health, Recommended Daily Nutrient Allowances, Department of Health Republic of China, Taiwan ROC (1993).

    Google Scholar 

  15. I. Savory and M. R. Wills, Trace metals: essential nutrients or toxins, Clin. Chem. 38(8), 1565–1573 (1992).

    PubMed  CAS  Google Scholar 

  16. F. Martin-Lagos, M. Navarro-Alarcon, C. Terres-Martos, et al., Zinc and copper concentrations in serum from Spanish women during pregnancy, Biol. Trace Element Res. 61, 61–70 (1998).

    CAS  Google Scholar 

  17. M. S. Alaejos and C. D. Romero, Analysis of selenium in body fluids: a review, Chem. Rev. 95, 227–257 (1995).

    Article  Google Scholar 

  18. Food and Nutrition Board, U.S. Recommended Dietary Allowance, 10th ed., National Academy Press, Washington, DC, p. 127 (1989).

    Google Scholar 

  19. W. K. Chen, C. C. Yen, B. L. Wei, et al. Spectrochim Acta B 53, 131–138 (1998).

    Article  Google Scholar 

  20. S. M. Liu, C. Chung, J. T. Chuang, et al., Daily dietary intake of minor and trace elements by upper social groups in Taiwan, J. Radioanal. Nucl. Chem. Articles 150(2), 397–415 (1991).

    Article  CAS  Google Scholar 

  21. C. Y. Chen, Optimal conditions for identifying 80Br and 128I in health food Angelica keiskei using rapid epithermal neutron activation analysis, Appl. Radiat. Isot. 58(4), 423–429 (2003).

    Article  PubMed  CAS  Google Scholar 

  22. C. Y. Chen, Elemental analysis of Taiwanese health food “Angelica Keiski” with INAA, J. Radioanal. Nucl. Chem Articles 252(3), 551–558 (2002).

    Article  CAS  Google Scholar 

  23. Y. Y. Wei, C. Chung, and C. W. Wu, Optimal analytical conditions for determining elements in gastric tissue and blood of cancer patients using neutron activation, J. Anal. Chem. 53(7), 776–782 (1998).

    Google Scholar 

  24. V. Singh and A. N. Garg, Vivek Singh, Trace element correlations in the blood of Indian women with breast cancer, Biol. Trace Element Res. 64, 237–245 (1998).

    CAS  Google Scholar 

  25. A. N. Garg, V. Singh, R. G. Weginwar, et al., Baseline levels of elemental concentrations in whole blood, plasma, and ertyrocytes of Nigerian subjects, Biol. Trace Element Res. 46, 185–202 (1994).

    CAS  Google Scholar 

  26. S. M. Lin, Determination of trace elements in human whole blood by instrumental neutron activation analysis, Radioisotopes 32, 155–162 (1985).

    Google Scholar 

  27. J. O. Ojo, A. F. Oluwole, M. A. Durosinmi, et al., Baseline levels of elemental concentrations in whole blood, plasma, and ertyrocytes of Nigerian subjects, Biol. Trace Element Res. 46, 461–469 (1994).

    Article  Google Scholar 

  28. Populations at Central Taiwan: Ministry of the Interior, Exec. Yuan, Taiwan ROC (2003). Available at http://www.moi.gov.tw/w3/stat/home.asp

  29. D. B. Lin, W. T. Nieh, H. M. Wang, et al., Seroepidemiology of Hilicobacter pylori infection among preschool children in Taiwan, Am. J. Trop. Med. Hyg. 61(4), 554–558 (1999).

    PubMed  CAS  Google Scholar 

  30. Canberra Industries Inc., MicroSampo software cise 511, LOGION, OY, Helsinki (1986).

    Google Scholar 

  31. I. Lombeck, K. Kasperek, L. E. Feinendegen, et al., Serum-selenium concentrations in patients with maple-syrup-urine disease and, phenylketonuria under dieto-therapy, Clin. Chim. Acta 64, 57–61 (1975).

    Article  PubMed  CAS  Google Scholar 

  32. T. C. Pan, Y. L. Chen, and W. J. Wu, Serum trace metals in blackfoot disease patients, Kaohsiung J Med. Sci. 12, 550–560 (1996).

    Google Scholar 

  33. E. Havranek, A. Bumbalova and M. Harangozo, Contribution to the radionuclide x-ray fluorescence analysis of human blood and plasma, J. Radioanal. Nucl. Chem. Lett. 104(4), 223–230 (1986).

    Article  CAS  Google Scholar 

  34. M. L. Soong, S. H. Chung, S. D. Kuo, et al., Annual report of Department of Health, ROC, Study of blood trace elements in patients with Yang deficiency syndrome (in Chinese). Report DOH 83-CM-033, pp 11–31 (1994).

  35. J. Versieck and R. Cornelis, Normal levels of trace elements in human blood plasma or serum, Anal. Chim. Acta 116, 217–254 (1980).

    Article  CAS  Google Scholar 

  36. G. F. Knoll, Radiation Detection and Measurement, 2nd ed., Wiley, New York (1989).

    Google Scholar 

  37. V. S. Shirley and C. M. Lederer, Table of Isotopes, Wiley-Interscience, New York (1978).

    Google Scholar 

  38. K. R. Caven, R. S. Gibson, C. F. Grazioso, et al., Growth and body composition of periurban Guatemalan children in relation to zinc status: a longitudinal zinc intervention trial, Am. J. Clin. Nutr. 57, 344–353 (1993).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, CY. Chromium, iron, selenium, and zinc levels in serum from preschool children in central Taiwan. Biol Trace Elem Res 100, 169–184 (2004). https://doi.org/10.1385/BTER:100:2:169

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/BTER:100:2:169

Index Entries

Navigation