Skip to main content
Log in

Antioxidant properties of chromium and zinc

In vivo effects on digestibility, lipid peroxidation, antioxidant vitamins, and some minerals under a low ambient temperature

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The effects of chromium (chromium picolinate, CrPic) and zinc (ZnSO4H2O) supplementation on serum concentrations of malondialdehyde (MDA) (an indicator of lipid peroxidation) and serum status of some antioxidant vitamins and minerals of laying hens (Hy-Line) reared at a low ambient temperature (6.8°C) were evaluated. One hundred twenty laying hens (Hy-Line; 32 wk old) were divided into 4 groups, 30 hens per group. The hens were fed either a basal diet or the basal diet supplemented with either 0.4 mg Cr/kg of diet, 30 mg Zn/kg of diet, or 0.4 mg Cr plus 30 mg Zn/kg of diet. Digestibility of nutrients (dry matter [DM], organic matter [OM], crude protein [CP], and ether extract [EE]) increased by supplementation of chromium and zinc (p<0.05). Supplemental chromium and zinc increased serum vitamins C and E but decreased MDA concentrations (p<0.05). Additionally, supplemental chromium and zinc caused an increase in the serum concentrations of Fe, Zn, Mn, and Cr (p < 0.05). The present study showed that low ambient temperature causes detrimental effects on the digestibility of nutrients and antioxidant status and that such detrimental effects caused by low ambient temperature can be alleviated by chromium and zinc supplementation, particularly when Cr and Zn were simultaneously included into the diet. Data obtained in the present study suggest that such supplementation can be considered as a protective management practice in a diet of laying hens for alleviating negative effects of cold stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. M. Sagher, The effect of cold stress on muscle growth in young chicks, Growth 39, 281–288 (1975).

    PubMed  CAS  Google Scholar 

  2. Z. Arad and J. Marder, Comparison of the productive performances of the sinai bedouin fowl, the white leghorn and their crossbreeds: study under natural desert conditions, Br. Poult. Sci. 23, 333–338 (1982).

    Article  PubMed  CAS  Google Scholar 

  3. M. Spinu and A. A. Degen, Effect of cold stress on performance and immune responses of bedouin and white leghorn hens, Br. Poult. Sci. 34, 177–185 (1993).

    PubMed  CAS  Google Scholar 

  4. M. E. Ensminger, J. E. Oldfield, and W. W. Heinemann, Feeds and Nutrition, Ensminger Publishing, Clovis, CA, USA, pp. 108–110 (1990).

    Google Scholar 

  5. R. A. Anderson, Stress effects on chromium nutrition of humans and farm animals, in Biotechnology in Feed Industry, T. P. Lyons, and K. A. Jacques, eds., Nottingham University Press. Nothingam, pp. 267–274 (1994).

    Google Scholar 

  6. NRC, The Role of Chromium in Animal Nutrition, National Academy Press, Washington, DC (1997).

    Google Scholar 

  7. R. A. Anderson, Chromium, in Trace Elements in Human and Animal Nutrition, W. Mertz, ed., Academic, New York, pp. 225–244 (1987).

    Google Scholar 

  8. H. S. Siegel, Stress, strains and resistance, Br. Poult. Sci. 36, 3–20 (1995).

    PubMed  CAS  Google Scholar 

  9. D. N. Mowat, Organic chromium. A new nutrient for stressed animals, in Biotechnology in the Feed Industry: Proceedings of Alltech’s Tenth Annual Symposium, T. P. Lyons and K. A. Jacques, eds., Nottingham University Press, Nottingham, pp. 275–282 (1994).

    Google Scholar 

  10. M. O. Smith and R. G. Teeter, Potassium balance of the 5 to 8-week old boiler exposed to constant heat or cycling high temperature stress and the effect of supplemental potassium chloride on body weight gain and feed efficiency, Poult. Sci. 66, 487–492 (1987).

    PubMed  CAS  Google Scholar 

  11. B. Halliwell and J.M.C. Gutteridge, Free Radicals in Biology and Medicine, 2nd ed., Oxford University Press, New York (1989).

    Google Scholar 

  12. K. Sahin, N. Sahin, and S. Yaralıoglu, Effects of vitamin C and vitamin E on lipid peroxidation, blood serum metabolites and mineral concentrations of laying hens reared at high ambient temperature, Biol. Trace Element Res. 85, 35–45 (2002).

    Article  CAS  Google Scholar 

  13. N. Sahin, M. Onderci, and K. Sahin. Effects of dietary chromium and zinc on egg production, egg quality and some blood metabolites of laying hens reared under low ambient temperature, Biol. Trace Element Res. 85, 47–58 (2002).

    Article  CAS  Google Scholar 

  14. K. Sahin, O. Kucuk, N. Sahin, et al., Effects of dietary chromium picolinate supplementation on egg production, egg quality, and serum concentrations of insulin, corticostrerone and some metabolites of Japanese quails, Nutr. Res. 21, 1315–1321 (2001).

    Article  CAS  Google Scholar 

  15. D. D. Gallaher, A. S. Csallany, D. W. Shoeman, et al., Diabetes increases excretion of urinary malondehyde cojugates in rats, Lipids 28, 663–666 (1993).

    Article  PubMed  CAS  Google Scholar 

  16. H. G. Preuss, P. L. Grojec, S. Lieberman, et al., Effects of different chromium compounds on blood pressure and lipid peroxidation in spontaneously hypertensive rats, Clin. Nephrol. 47(5), 325–330 (1997).

    PubMed  CAS  Google Scholar 

  17. S. Okado, H. Tsukada, and H. Ohba, Enhancement of nucleolar RNA synthesis by chromium(III) in regenerating rat liver, J. Inorg. Biochem. 21, 113–124 (1984).

    Article  Google Scholar 

  18. M. D. Lindeman, Organic chromium—the missing link in farm animal nutrition, in Biotechnology in the Feed Industry: Proceedings of Alltech’s Twelfth Annual Symposium, T. P. Lyons and K. A. Jacques, eds., Nottingham University Press, Nottingham, pp. 299–314 (1996).

    Google Scholar 

  19. A. J. Wright, D. N. Mowat, and B. A. Mallard, Supplemental chromium and bovine respiratory disease vaccines for stressed feeder calves, Can. J. Anim. Sci. 74, 287–293 (1994).

    CAS  Google Scholar 

  20. K. Sahin, O. Küçük, and N. Sahin, Effects of dietary chromium picolinate supplementation on performance and plasma concentrations of insulin and corticosterone in laying hens under low ambient temperature, J. Anim. Physiol. Anim. Nutr. 85, 142–148 (2001).

    Article  CAS  Google Scholar 

  21. M. Zago and P. I. Oteiza, The antioxidant properties of zinc: interactions with iron and antioxidants, Free Radical Biol. Med. 31, 266–274 (2001).

    Article  CAS  Google Scholar 

  22. D. Bagchi, P. J. Vuchetich, M. Bagchi, et al., Protective effects of Zn salts on TPA-induced hepatic and brain lipid peroxidation, glutathione depletion, DNA damage and peritoneal macrophage activation in mice, Gen. Pharmacol. 30, 43–50 (1998).

    PubMed  CAS  Google Scholar 

  23. A. Kraus, H. P. Roth, and M. Kirchgessner, Supplementation with vitamin C, vitamin E or b-carotene influences osmotic fragility and oxidative damage of erythrocytes of Zndeficient rats, J. Nutr. 127, 1290–1296 (1997).

    PubMed  CAS  Google Scholar 

  24. P. I. Oteiza, K. L. Olin, C. G. Fraga, et al., Zn deficiency causes oxidative damage to proteins, lipids and DNA in rat testes, J. Nutr. 125, 823–829 (1995).

    PubMed  CAS  Google Scholar 

  25. K. L. Olin, M. K. Shigenaga, B. N. Ames, et al., Maternal dietary Zn influences DNA strand break and 8-hydroxy-29-deox-yguanosine levels in infant Rhesus monkey liver, Proc. Soc. Exp. Biol. Med. 203, 461–466 1993.

    PubMed  CAS  Google Scholar 

  26. J. P. Burke and M. R. Fenton, Effect of a Zn-deficient diet on lipid peroxidation in liver and tumor cellular membranes, Proc. Soc. Exp. Biol. Med. 179, 187–191 (1985).

    PubMed  CAS  Google Scholar 

  27. P. I. Oteiza, M. S. Clegg, M. P. Zago, et al., Zinc deficiency induces oxidative stress and AP-1 activation in 3T3 cells, Free Radical Biol. Med. 28, 1091–1099 (2000).

    Article  CAS  Google Scholar 

  28. D. J. Tate, M. V. Miceli, and D. A. Newsome, Zn protects against oxidative damage in cultured human retinal pigment epithelial cells, Free Radical Biol. Med. 26, 704–713 (1999).

    Article  CAS  Google Scholar 

  29. P. I. Oteiza, K. L. Olin, C. G. Fraga, et al., Oxidant defense systems in testes from Zn deficient rats, Proc. Soc. Exp. Biol. Med. 213, 85–91 (1996).

    PubMed  CAS  Google Scholar 

  30. S. R. Powell, The antioxidant properties of zinc, J. Nutr. 130, 447S-1454S (2000).

    Google Scholar 

  31. NRC, Nutrient Requirements of Poultry, 9th rev. ed., National Academy Press. Washington, DC (1994).

    Google Scholar 

  32. H. H. Petry and W. Rapp, On the problem of chromium oxide determination in digestion studies, Z. Tierphysiol. Tierernaehr. Futtemittlkd. 27, 181–189 (1971).

    CAS  Google Scholar 

  33. AOAC, Official Methods of Analysis, 15th ed., Association of Official Analytical Chemists, Arglinton, VA (1990).

    Google Scholar 

  34. K. Terpstra and N. De Hart, The estimation of urinary nitrogen and fecal nitrogen in poultry excreta, Z. Tierphysiol. Tierernaehr. Futtemittlkd. 32, 306–311 (1974).

    CAS  Google Scholar 

  35. Z. A. Placer, L. L. Cushmann, and B. C. Johnson, Estimation of products of lipid peroxidation in biochemical systems, Anal. Biochem. 16, 359–364 (1966).

    Article  PubMed  CAS  Google Scholar 

  36. C. H. McMurry, W. J. Blanchflower, and D. A. Rice, Influence of extraction techniques on the determination of α-tocopherol in animal feedstuffs, J. Assoc. Off. Anal. Chem. 63, 1258–1261 (1980).

    Google Scholar 

  37. A. Kyaw, A Simple calorimetric methods for ascorbic acid determination in blood plasma, Clin. Chem. Acta. 86, 153–160 (1978).

    Article  CAS  Google Scholar 

  38. X. Chang, D. N. Mowat, and G. A. Spiers. Carcass characteristics and tissue-mineral contents of steers fed supplemental chromium, Can. J. Anim. Sci. 72, 663–668 (1992).

    Article  CAS  Google Scholar 

  39. SAS Institute, SAS ® User’s Guide: Statistic, SAS Institute, Cary NC (1996).

    Google Scholar 

  40. J. S. Borel, T. C. Majerus, M. M. Polansky, et al., Chromium intake and urinary chromium excretion of trauma patients, Biol. Trace Element Res. 6, 317–321 (1984).

    Article  Google Scholar 

  41. W. R. Beisel, Single nutrients and immunity, Am. J. Clin. Nutr. 35, 442–451 (1982).

    Google Scholar 

  42. W. G. Pond, D. C. Church, and K. R. Pond, Zinc, in Basic Animal Nutrition and Feeding, 4th ed., Wiley, New York, pp. 190–193 (1995).

    Google Scholar 

  43. N. Sahin and K. Sahin, Optimal dietary concentrations of vitamin C and chromium picolinate for alleviating the effect of low ambient temperature (6.2°C) on egg production, some egg characteristics, and nutrient digestibility in laying hens, Vet. Med. Czech. 46, 229–236 (2001).

    CAS  Google Scholar 

  44. E. T. Kornegay, Z. Wang, C. M. Wood, et al., Supplemental chromium picolinate influences nitrogen balance, dry matter digestibility, and carcass traits in growing-finishing pigs, J. Anim. Sci. 75, 1319–1323 (1997).

    PubMed  CAS  Google Scholar 

  45. K. C. Klasing, Comparative Avian Nutrition, Cambridge, University Press, Cambridge, pp. 277–299 (1998).

    Google Scholar 

  46. R. Feenster, High temperatures decrease vitamin utilization, Misset Poult. 38, 38–41 (1985).

    Google Scholar 

  47. J. C. Smith, Jr., E. G. McDaniel, F. F. Fan, et al., Zinc: a trace element essential in vitamin A metabolism, Science 181, 954–955 (1973,).

    Article  PubMed  CAS  Google Scholar 

  48. K. Sahin, N. Sahin, and O. Kucuk, Effects of dietary chromium and ascorbic acid supplementation on digestion of nutrients, serum antioxidant status and mineral concentrations in laying hens reared at a low ambient temperature, Biol. Trace Element Res. 85, 113–124 (2002).

    Article  Google Scholar 

  49. A. S. Prasad, The role of zinc in brain and nerve functions, in Metals and Oxidative Damage in Neurological Disorders, A. Connor, ed., Plenum, New York, pp. 95–111 (1997).

    Google Scholar 

  50. P.N.B. Gibbs, M. G. Gore, and P. M. Jordan, Investigation of the effect of metal ions on the reactivity of thiol groups in human 5-aminolaevulinate dehydratase, Biochem. J. 225, 573–580 (1985).

    PubMed  CAS  Google Scholar 

  51. W. R. Beisel, Single nutrients and immunity, Am. J. Clin. Nutr. 35, 442–451 (1982).

    Google Scholar 

  52. L. S. Tufft and C. F. Nockles, The effects of stress, Escherichia coli, dietary ethylenediamintetraacetic acid, and their interaction on tissue trace elements in chicks, Poult. Sci. 70, 2439–2449 (1991).

    PubMed  CAS  Google Scholar 

  53. W. J. Bettger and B. L. O’Dell, Physiological roles of zinc in the plasma membrane of mammalian cells, J. Nutr. Biochem. 4, 194–207 (1993).

    Article  CAS  Google Scholar 

  54. A. W. Girotti, J. P. Thomas, and J. E. Jordan, Inhibitory effect of Zn(II) on free radical lipid peroxidation in erythrocyte membranes, Free Radical Biol. Med. 1, 395–401 (1985).

    CAS  Google Scholar 

  55. T. M. Bray and W. J. Bettger, The physiological role of zinc as an antioxidant, Free Radical Biol. Med. 8, 281–291 (1990).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Onderci, M., Sahin, N., Sahin, K. et al. Antioxidant properties of chromium and zinc. Biol Trace Elem Res 92, 139–149 (2003). https://doi.org/10.1385/BTER:92:2:139

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/BTER:92:2:139

Index Entries

Navigation