Skip to main content
Log in

Excessive hepatic copper accumulation in jaundiced rats fed a high-copper diet

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The response of copper metabolism to dietary copper challenge was investigated in jaundiced rats with elevated plasma concentrations of conjugated bilirubin as a result of impaired canicular transport of bilirubin glucuronides. Control and jaundiced rats were fed purified diets with either normal (64 µmol Cu/kg) or high (640 µmol Cu/kg) concentration of added copper. Copper loading produced a greater increase in hepatic copper concentrations in the jaundiced than in control rats. The greater dietary-copper-induced increase in hepatic copper in the jaundiced rats can be explained by the observed smaller rise in biliary copper excretion and a greater efficiency of dietary copper absorption. In individual rats, there was a positive relationship between hepatic copper concentrations and biliary copper concentrations. It is suggested that not the transport of copper from liver cells to bile but that from plasma to bile is diminished in the jaundiced rats. The elevated plasma copper concentrations in the jaundiced rats may support this suggestion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. P. L. M. Jansen, W. H. Peters, and W. H. Lamers, Heriditary chronic conjugated hyperbilirubinemia in mutant rats caused by defective hepatic anion transport, Hepatology 5, 573–579 (1985).

    Article  PubMed  CAS  Google Scholar 

  2. F. Kuipers, M. Enserink, R. Havinga, A. B. M. Van der Steen, M. J. Hardonk, J. Fevery, et al. Separate transport systems for biliary secretion of sulfated and unsulfated bile acids in the rat, J. Clin. Invest. 81, 1593–1599 (1988).

    Article  PubMed  CAS  Google Scholar 

  3. R. P. J. Oude Elferink, R. Ottenhoff, W. Liefting, J. De Haan, and P. L. M. Jansen, Hepatobiliary transport of glutathione and gluthathione conjugate in rats with hereditary hyperbilirubinemia, J. Clin. Invest. 84, 476–483 (1989).

    Google Scholar 

  4. R. Houwen, M. Dijkstra, F. Kuipers, E. P. Smit, R. Havinga, and R. J. Vonk, Two pathways for biliary copper excretion in the rat. The role of glutathione, Biochem. Pharmacol. 39, 1039–1044 (1990).

    Article  PubMed  CAS  Google Scholar 

  5. N. Sugawara, Y. R. Lai, and C. Sugawara, Therapeutic effects of tetrathiomolybdate on hepatic dysfunction occurring naturally in Long-Evans Cinnamon (LEC) rats: a bona fide animal model for Wilson’s disease, Res. Commun. Mol. Pathol. Pharmacol. 103, 177–187 (1999).

    PubMed  CAS  Google Scholar 

  6. A. C. Beynen, V. Baumans, A. P. M. G. Bertens, J. W. M. Haas, H. Van Herck, F. R. Stafleu, et al. Identification and clinical examination of jaundiced rats, Z. Versuchstierkd. 32, 1–5 (1989).

    PubMed  CAS  Google Scholar 

  7. M. Dijkstra, F. Kuipers, G. J. Van den Berg, R. Havinga, and R. J. Vonk, Differences in hepatic processing of dietary and intravenously administered copper in rats, Hepatology 26, 962–966 (1997).

    Article  PubMed  CAS  Google Scholar 

  8. National Research Council, Nutrient Requirements of Laboratory Animals, National Academy of Sciences, Washington, DC. (1978).

    Google Scholar 

  9. C. H. Fleck and A. Barth, Influence of xenobiotics on bile flow and bile composition in rats — methodological approach, Exp. Pathol. 39, 175–185 (1990).

    PubMed  CAS  Google Scholar 

  10. F. W. Sunderman, Jr. and S. Nomoto, Measurement of human serum ceruloplasmin by its p-phenylenediamine oxidase activity, Clin. Chem. 16, 903–910 (1970).

    PubMed  CAS  Google Scholar 

  11. C. D. Klaassen, Biliary excretion of metals, Drug Metab. Rev. 5, 165–196 (1976).

    PubMed  CAS  Google Scholar 

  12. P. Farrer and S. P. Mistillis, Absorption of exogenous and endogenous biliary copper in the rat, Nature 213, 291–292 (1967).

    Article  PubMed  CAS  Google Scholar 

  13. C. A. Owen, Jr., Absorption and excretion of Cu64-labeled copper by the rat, Am. J. Physiol. 207, 1203–1206 (1964).

    PubMed  CAS  Google Scholar 

  14. S. Yu, C. E. West, and A. C. Beynen, Increasing intakes of iron reduce status, absorption and biliary excretion of copper in rats, Br. J. Nutr. 71, 887–895 (1994).

    Article  PubMed  CAS  Google Scholar 

  15. S. Yu and A. C. Beynen, High tin intake reduces copper status in rats through inhibition of copper absorption, Br. J. Nutr. 73, 863–869 (1995).

    Article  PubMed  CAS  Google Scholar 

  16. J. Alexander and J. Aaseth, Biliary excretion of copper and zinc in the rat as influenced by diethylmaleate, selenite and diethyldithiocarbamate, Biochem. Pharmacol. 29, 2129–2133 (1980).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, S., van der Meer, R. & Beynen, A.C. Excessive hepatic copper accumulation in jaundiced rats fed a high-copper diet. Biol Trace Elem Res 88, 255–269 (2002). https://doi.org/10.1385/BTER:88:3:255

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/BTER:88:3:255

Index Entries

Navigation