Skip to main content
Log in

Bioreactor design studies for a hydrogen-producing bacterium

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Carbon monoxide (CO) can be metabolized by a number of microorganisms along with water to produce hydrogen (H2) and carbon dioxide. National Renewable Energy Laboratory researchers have isolated a number of bacteria that perform this so-called water-gas shift reaction at ambient temperatures. We performed experiments to measure the rate of CO conversion and H2 production in a trickle-bed reactor (TBR). The liquid recirculation rate and the reactor support material both affected the mass transfer coefficient, which controls the overall performance of the reactor. A simple reactor model taken from the literature was used to quantitatively compare the performance of the TBR geometry at two different size scales. Good agreement between the two reactor scales was obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bale, C. W., Pelton, A. D., and Thompson, W. T. (2001), FACT-SAGE, vol. 5, Ecole Polytechnique de Montreal, Montreal, Canada.

    Google Scholar 

  2. Uffen, R. L. (1976), Proc. Nat. Acad. Sci. USA 73(9), 3298–3302.

    Article  CAS  Google Scholar 

  3. Dashekvicz, M. P. and Uffen, R. L. (1979), Int. J. Syst. Bacteriol. 29(2), 145–148.

    Google Scholar 

  4. Bott, M., Eikmanns, B., and Thauer, R. K. (1986) Eur. J. Biochem. 159, 393–98.

    Article  CAS  Google Scholar 

  5. Jung, G. Y., Jung, H. O., Kim, J. R., et al. (1999), Biotechnol. Lett. 21, 525–529.

    Article  CAS  Google Scholar 

  6. Jung, G. Y., Kim, J. R., Jung, H. O., et al. (1999), Biotechnol. Lett. 21, 89–873.

    Google Scholar 

  7. Imhoff, J. F., Truper, H. G., and Pfennig, N. (1984), Int. J. Syst. Bacteriol. 34, 340–343.

    Google Scholar 

  8. Champine, J. E. and Uffen, R. L. (1987), FEMS Microbiol. Lett. 44, 307–311.

    Article  CAS  Google Scholar 

  9. Willems, A., Gillis, M., and de Ley, J. (1991), Int. J. Syst. Bacteriol. 41, 65–73.

    Google Scholar 

  10. Bailey, J. E. and Ollis, D. F. (1977), Biochemical Engineering Fundamentals, McGraw-Hill, NY.

    Google Scholar 

  11. Klasson, K. T., Elmore, B. B., Vega, J. L., et al. (1990), Appl. Biochem. Biotechnol. 24/25, 857–873.

    Google Scholar 

  12. Kimmel, D. E., Klasson, K. T., Clausen, E. C., et al. (1991), Appl. Biochem. Biotechnol. 28/29, 457–469.

    Google Scholar 

  13. Cowger, J. P., Klasson, K. T., Ackerson, M. D., et al. (1992), Appl. Biochem. Biotechnol. 34/35, 613–624.

    Google Scholar 

  14. Maness, P. C. and Weaver, P. F. (1994), Appl. Biochem. Biotechnol. 45,46, 395–406.

    Google Scholar 

  15. Vega, J. L., Clausen, E. C., and Gaddy, J. L. (1989), Biotechnol. Bioeng. 34, 774–784.

    Article  CAS  Google Scholar 

  16. Vega, J. L., Antorrena, G. M., Clausen, E. C., et al. (1989), Biotechnol. Bioeng. 34, 785–793.

    Article  CAS  Google Scholar 

  17. Fogler, H. S. (1992), Elements of Chemical Reactor Engineering, 2nd ed., Prentice Hall PTR, Upper Saddle River, NJ.

    Google Scholar 

  18. Foust, A.S., Wenzel, L. A., Clump, C. W., et al. (1980), Principles of Unit Operations, 2nd ed., John Wiley & Sons, NY.

    Google Scholar 

  19. Nauman, E. B. (1987), Chemical Reactor Design, John Wiley & Sons, NY.

    Google Scholar 

  20. Charpentier, J.-C. Adv. Chem. Eng. 11, 1–133.

  21. Klasson, K. T., Lundback, K. M. O., Clausen, E. C., et al. (1993), J. Biotechnol. 29, 177–188.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edward J. Wolfrum.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wolfrum, E.J., Watt, A.S. Bioreactor design studies for a hydrogen-producing bacterium. Appl Biochem Biotechnol 98, 611–625 (2002). https://doi.org/10.1385/ABAB:98-100:1-9:611

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/ABAB:98-100:1-9:611

Index Entries

Navigation