Skip to main content
Log in

Utilization of xylitol dehydrogenase in a combined microbial/enzymatic process for production of xylitol from d-glucose

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The production of xylitol from d-glucose occurs through a three-step process in which d-arabitol and d-xylulose are formed as the first and second intermediate product, respectively, and both are obtained via microbial bioconversion reactions. Catalytic hydrogenation of d-xylulose yields xylitol; however, it is contaminated with d-arabitol. The aim of this study was to increase the stereoselectivity of the d-xylulose reduction step by using enzymatic catalysis. Recombinant xylitol dehydrogenase from the yeast Galactocandida mastotermitis was employed to catalyze xylitol formation from d-xylulose in an NADH-dependent reaction, and coenzyme regeneration was achieved by means of formate dehydrogenase-catalyzed oxidation of formate into carbon dioxide. The xylitol yield from d-xylulose was close to 100%. Optimal productivity was found for initial coenzyme concentrations of between 0.5 and 0.75 mM. In the presence of 0.30 M (45 g/L) d-xylulose and 2000 U/L of both dehydrogenases, exhaustive substrate turnover was achieved typically in a 4-h reaction time. The enzymes were recovered after the reaction in yields of approx 90% by means of ultrafiltration and could be reused for up to six cycles of d-xylulose reduction. The advantages of incorporating the enzyme-catalyzed step in a process for producing xylitol from d-glucose are discussed, and strategies for downstream processing are proposed by which the observed coenzyme turnover number of approx 600 could be increased significantly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Parajo, J. C., Dominguez, H., and Dominguez, J. M. (1998), Bioresour. Technol. 65, 191–201.

    Article  CAS  Google Scholar 

  2. Parajo, J. C., Dominguez, H., and Dominguez, J. M. (1998), Bioresour. Technol. 65, 203–212.

    Article  CAS  Google Scholar 

  3. Parajo, J. C., Dominguez, H., and Dominguez, J. M. (1998), Bioresour. Technol. 66, 25–40.

    Article  CAS  Google Scholar 

  4. Meinander, N. Q. and Hahn-Hägerdal, B. (1997), Biotechnol. Bioeng. 54, 391–399.

    Article  CAS  Google Scholar 

  5. Roca, E., Meinander, N., and Hahn-Hägerdal, B. (1996), Biotechnol. Bioeng. 51, 317–326.

    Article  CAS  Google Scholar 

  6. Onishi, H. and Suzuki, T. (1969), Appl. Microbiol. 18, 1031–1035.

    CAS  Google Scholar 

  7. Leleu, J. -B., Duflot, P., and Caboche, J. -J. (1993), US patent no. US005096820.

  8. Wong, B., Murray, J. S., Castellanos, M., and Croen, K. D. (1993), J. Bacteriol. 175, 6314–6320.

    CAS  Google Scholar 

  9. Suzuki, S., Sugiyama, M., Mori, M., Mihara, Y., and Yokozeki, K. (2000), European patent no. EP1026255A1.

  10. Sugiyama, M., Suzuki, S., Mihara, Y., Hashiguchi, K., and Yokozeki, K. (2000), European patent no. EP1026254A1.

  11. Lunzer, R., Mamnun, Y., Haltrich, D., Kulbe, K. D., and Nidetzky, B. (1998), Biochem. J. 336, 91–99.

    CAS  Google Scholar 

  12. Lunzer, R., Ortner, I., Haltrich, D., Kulbe, K. D., and Nidetzky, B. (1998), Biocat. Biotrans. 16, 333–349.

    CAS  Google Scholar 

  13. Habenicht, A., Motejadded, H., Kiess, M., Wegerer, A., and Mattes, R. (1999), Biol. Chem. 380, 1405–1411.

    Article  CAS  Google Scholar 

  14. Schütte, H., Flossdorf, J., Sahm, H., and Kula, M. -R. (1976), Eur. J. Biochem. 62, 155–160.

    Article  Google Scholar 

  15. Slatner, M., Nidetzky, B., and Kulbe, K. D. (1999), Biochemistry 38, 10,489–10,498.

    Article  CAS  Google Scholar 

  16. Nidetzky, B., Neuhauser, W., Haltrich, D., and Kulbe, K. D. (1996), Biotechnol. Bioeng. 52, 387–396.

    Article  CAS  Google Scholar 

  17. Kragl, U., Vasic-Racki, D., and Wandrey, C. (1996), Bioprocess Eng. 14, 291–297.

    CAS  Google Scholar 

  18. Osawa, T., Harada, T., and Osamu, T. (2000), Top. Catal. 13, 155–168.

    Article  CAS  Google Scholar 

  19. Mohr, T., Schwarz, E., and Mackert, P.-J. (2001), World patent no. W01/00550A1.

  20. Makkee, M., Kieboom, A. P. G., and van Bekkum, H. (1985), Starch 37, 136–141.

    Article  CAS  Google Scholar 

  21. Seelbach, K. and Kragl, U. (1997), Enzyme Microb. Technol. 20, 212–235.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernd Nidetzky.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mayer, G., Kulbe, K.D. & Nidetzky, B. Utilization of xylitol dehydrogenase in a combined microbial/enzymatic process for production of xylitol from d-glucose. Appl Biochem Biotechnol 98, 577–589 (2002). https://doi.org/10.1385/ABAB:98-100:1-9:577

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/ABAB:98-100:1-9:577

Index Entries

Navigation