Skip to main content
Log in

Use of measurement uncertainty analysis to assess accuracy of carbon mass balance closure for a cellulase production process

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Closing carbon mass balances is a critical and necessary step for verifying the performance of any conversion process. We developed a methodology for calculating carbon mass balance closures for a cellulase production process and then applied measurement uncertainty analysis to calculate 95% confidence limits to assess the accuracy of the results. Cellulase production experiments were conducted in 7-L fermentors using Trichoderma reesei grown on pure cellulose (Solka-floc), glucose, or lactose. All input and output carbon-containing streams were measured and carbon dioxide in the exhaust gas was quantified using a mass spectrometer. On Solka-floc, carbon mass balances ranged from 90 to 100% closure for the first 48 h but increased to 101 to 135% closure from 72 h to the end of the cultivation at 168 h. Carbon mass balance closures for soluble sugar substrates ranged from 92 to 127% over the entire course of the cultivations. The 95% confidence intervals (CIs) for carbon mass balance closure were typically ±11 to 12 percentage points after 48 h of cultivation. Many of the carbon mass balance results did not bracket 100% closure within the 95% CIs. These results suggest that measurement problems with the experimental or analytical methods may exist. This work shows that uncertainty analysis can be a useful diagnostic tool for identifying measurement problems in complex biochemical systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wyman, C. E. (1999), Annu. Rev. Energy Environ. 24, 189–226.

    Article  Google Scholar 

  2. Wang, N. and Stephanopoulos, G. (1983), Biotechnol. Bioeng. 25, 2177–2208.

    Article  Google Scholar 

  3. Stephanopoulos, G., Aristidou, A., and Nielsen, J. (1998), in Metabolic Engineering: Principles and Methodologies, Academic, San Diego, CA, pp. 115–146.

    Google Scholar 

  4. van der Heijden, R., Heignen, J., Hellinga, C., Romein, B., and Luyben, K. (1994), Biotechnol. Bioeng. 43, 3–10.

    Article  Google Scholar 

  5. van der Heijden, R., Heignen, J., Hellinga, C., Romein, B., and Luyben, K. (1994), Biotechnol. Bioeng. 43, 11–20.

    Article  Google Scholar 

  6. van der Heijden, R., Heignen, J., Hellinga, C., Romein, B., and Luyben, K. (1994), Biotechnol. Bioeng. 44, 781–791.

    Article  Google Scholar 

  7. Rosenblitt, A., Agosin, E., Delgado, J., and Perez-Correa, R. (2000), Biotechnol. Prog. 16, 152–162.

    Article  CAS  Google Scholar 

  8. Hatzis, C., Riley, C., and Philippidis, G. (1996), Appl. Biochem. Biotechnol. 57/58, 443–459.

    CAS  Google Scholar 

  9. McMillan, J., Newman, M., Templeton, D., and Mohagheghi, A. (1999), Appl. Biochem. Biotechnol. 77–79, 649–665.

    Article  Google Scholar 

  10. Ross, A., Schugerl, K., and Scheiding, W. (1983), Eur. J. Appl. Microbiol. Biotechnol. 18, 29–37.

    Article  CAS  Google Scholar 

  11. Smits, J., Rinsema, A., Tramper, J., Van Sonabeek, H., and Knol, W. (1996), Appl. Microbiol. Biotechnol. 46, 489–496.

    Article  CAS  Google Scholar 

  12. Hayward, T. K., Hamilton, J., Tholudur, A., and McMillan, J. (2000), Appl. Biochem. Biotechnol. 84–86, 859–874.

    Article  Google Scholar 

  13. Sáez, J. C., Colucci, J. A., McMillan, J. D., Schell, D. J., Hamilton, J., Tholudur, A., and Hames, B., (2001), Biotechnol. Bioeng., submitted.

  14. Tholudur, A., Hames, B., Meglen, R., Hayward, T. K., Sáez, J. C., Hamilton, J., and McMillan, J. D. (2001), submitted.

  15. Smith, P. K., Krohn, R. I., Hermanson, G. T., Mallia, A. K., Gartner, F. H., Provenzano, M. D., Fujimoto, E. K., Goeke, N. M., Olson, B. J., and Klenk, D. C. (1985), Anal. Biochem. 150, 76–85.

    Article  CAS  Google Scholar 

  16. Abernethy, R. and Benedict, R. (1985), ISA Trans. 24(1), 75–79.

    Google Scholar 

  17. American Society of Mechanical Engineers (1986), ANSI/ASME PTC 19.1-1985, ASME, NY.

    Google Scholar 

  18. Vinzant, T. B., Ponfick, L., Nagle, N. J., Ehrman, C. I., Reynolds, J. B., and Himmel, M. E. (1994), Appl. Biochem. Biotechnol. 45/46, 611–626.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel J. Schell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schell, D.J., Sáez, J.C., Hamilton, J. et al. Use of measurement uncertainty analysis to assess accuracy of carbon mass balance closure for a cellulase production process. Appl Biochem Biotechnol 98, 509–523 (2002). https://doi.org/10.1385/ABAB:98-100:1-9:509

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/ABAB:98-100:1-9:509

Index Entries

Navigation