Skip to main content
Log in

Improvement of photosynthetic CO2 fixation at high light intensity through reduction of chlorophyll antenna size

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

At elevated light intensities (greater than ∼200 µE/[m2·s]), the kinetic imbalance between the rate of photon excitation and thermally activated electron transport results in saturation of the rate of photosynthesis. Since maximum terrestrial solar radiation can reach 200 µE/(m2·s), a significant opportunity exists to improve photosynthetic efficiency at elevated light intensities by achieving a kinetic balance between photon excitation and electron transport, especially in designed large-scale photosynthetic reactors in which a low-cost and efficient biomass production system is desired. One such strategy is a reduction in chlorophyll (chl) antenna size in relation to the reaction center that it serves. In this article, we report recent progress in this area of research. Light-saturation studies for CO2 fixation were performed on an antenna-deficient mutant of Chlamydomonas (DS521) and the wild type (DES15) with 700 ppm of CO2 in air. The light-saturated rate for CO2 assimilation in the mutant DS521 was about two times higher (187 µmol/[h·mg of chl]) than that of the wild type, DES15 (95 µmol/[h·mg of chl]). Significantly, a partial linearization of the light-saturation curve was also observed. These results confirmed that DS521 has a smaller relative chl antenna size and demonstrated that reduction of relative antenna size can improve the overall efficiency of photon utilization at higher light intensities. The antenna-deficient mutant DS521 can provide significant resistance to photoinhibition, in addition to improvement in the overall efficiency of CO2 fixation at high light. The experimental data reported herein support the idea that reduction in chl antenna size could have significant implications for both fundamental understanding of photosynthesis and potential application to improve photosynthetic CO2 fixation efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Greenbaum, E. and Lee, J. W. (1998), in BioHydrogen, Zaborsky, O. R., ed., Plenum Press, NY, pp. 235–241.

    Google Scholar 

  2. Clayon, R. K. (1977), in Chlorophyll-Proteins, Reaction Centers, and Photosynthetic Membranes, Brookhaven Symposia in Biology Number 28, Olson, J. W. and Hind, G., eds., Brookhaven National Laboratory Associated Universities, Upton, NY, pp. 1–15.

    Google Scholar 

  3. Herron, H. A. and Mauzerall, D. (1972), Plant Physiol. 50, 141–148.

    CAS  Google Scholar 

  4. Melis, A., Neidhardt, J., and Benemann, J. R. (1999), J. Appl. Phycol. 10, 515–525.

    Article  Google Scholar 

  5. Galloway, R. and Mets, C. (1989), Biochim. Biophys. Acta 975, 66–71.

    Article  CAS  Google Scholar 

  6. Imbault, P., Wittemer, C., Johanningmeier, U., Jacobs, J. D., and Howell, S. H. (1988), Gene 73, 397–407.

    Article  CAS  Google Scholar 

  7. Owens, T. G., Webb, S. P., Mets, L., Alberte, R. S., and Fleming, G. R. (1989), Biophys. J. 56, 95–106.

    CAS  Google Scholar 

  8. Sueoka, N. (1960), Proc. Natl. Acad. Sci. USA 46, 83–91.

    Article  CAS  Google Scholar 

  9. Owens, T. G., Webb, S. P., Mets, L., Alberte, R. S., and Fleming, G. R. (1987), Proc. Natl. Acad. Sci. USA 84, 1532–1536.

    Article  CAS  Google Scholar 

  10. Werst, M., Jia, Y., Mets, L., and Fleming, G. R. (1992), Biophys. J. 61, 868–878.

    CAS  Google Scholar 

  11. Nakajima, Y. and Ueda, R. (1999), J. Appl. Phycol. 11, 195–201.

    Article  Google Scholar 

  12. Krause, G. H. and Weis, E. (1991), Annu. Rev. Plant Physiol. Plant Mol. Biol. 42, 313–349.

    Article  CAS  Google Scholar 

  13. Schmid, G., Price, J. M., and Gaffron, H. (1966), J. Microscopie 5, 205–212.

    Google Scholar 

  14. Miron, A. S., Gomez, A. C., Camacho, F. G., Grima, E. M., and Chisti, Y. (1999), J. Biotechnol. 70, 249–270.

    Article  Google Scholar 

  15. Grima, E. M., Sevilla, J. F., Perez, J. S., and Camacho, F. G., (1996), J. Biotechnol. 45, 59–69.

    Article  Google Scholar 

  16. Fernandez, F. A., Camacho, F. G., Perez, J. S., Sevilla, J. F., and Grima, E. M. (1998), Biotechnol. Bioeng. 58, 605–616.

    Article  Google Scholar 

  17. Kok, B. (1953), Algal Culture: From Labortory to Pilot Plant, Carnegie Institute, Washington, DC, pp. 63–75.

    Google Scholar 

  18. Janssen, M., Kuijpers, T. C., Veldhoen, B., Ternbach, M. B., Tramper, J., Mur, L. R., and Wijffels, R. H. (1999), J. Biotechnol. 70, 323–333.

    Article  CAS  Google Scholar 

  19. Watanabe, Y., Delanoue, J., and Hall, D. O. (1995), Biotechnol. Bioeng. 47, 261–269.

    Article  CAS  Google Scholar 

  20. Watanabe, Y. and Hall, D. O. (1996), Energ. Convers. Manage. 37, 1321–1326.

    Article  CAS  Google Scholar 

  21. Zhang, K., Kurano, N., and Miyachi, S. (1999), Appl. Microbiol. Biotechnol. 52, 781–786.

    Article  CAS  Google Scholar 

  22. Myers, J. (1957), Encyclopedia of Chemical Technology, pp. 649–680.

  23. Rorrer, G. L. and Mullikin, R. K. (1999), Chem. Eng. Sci. 54, 3153–3162.

    Article  CAS  Google Scholar 

  24. Lee, C. G. and Palsson, B. O. (1995), J. Ferment. Bioeng. 79, 257–263.

    Article  CAS  Google Scholar 

  25. Ogbonna, J. C., Soejima, T., and Tanaka, H. (1999), J. Biotechnol. 70, 289–297.

    Article  CAS  Google Scholar 

  26. Fuentes, M. R., Sanchez, J. R., Sevilla, J. F., Fernandez, F. A., Perez, J. S., and Grima, E. M. (1999), J. Biotechnol. 70, 271–288.

    Article  Google Scholar 

  27. Hirata, S., Taya, M., Tone, S., and Hayashitani, M. (1997), Kagaku Kogaku Ronbun 23, 331–341.

    CAS  Google Scholar 

  28. Lee, Y. K., Ding, S. Y., Low, C. S., Chang, Y. C., and Chew, P. C. (1995), J. Appl. Phycol. 7, 47–51.

    Article  CAS  Google Scholar 

  29. Hu, Q., Guterman, H., and Richmond, A. (1996), Biotechnol. Bioeng. 51, 51–60.

    Article  CAS  Google Scholar 

  30. Ratchford, I. J. and Fallowfield, H. J. (1992), J. Appl. Phycol. 4, 1–9.

    Article  Google Scholar 

  31. Borowitzka, M. A. (1999), J. Biotechnol. 70, 313–321.

    Article  CAS  Google Scholar 

  32. Mann, C. C. (1999), Science 283, 310–314.

    Article  CAS  Google Scholar 

  33. Mann, C. C. (1997), Science 277, 1038–1043.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The article was authored by a contractor of the U.S. government under contract no. DE-AC05-00OR22725. Accordingly, the U.S. government retains a nonexclusive, royaltyfree license to publish or reproduce the published form of this contribution, or allow others to do so, for U.S. government purposes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, J.W., Mets, L. & Greenbaum, E. Improvement of photosynthetic CO2 fixation at high light intensity through reduction of chlorophyll antenna size. Appl Biochem Biotechnol 98, 37–48 (2002). https://doi.org/10.1385/ABAB:98-100:1-9:37

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/ABAB:98-100:1-9:37

Index Entries

Navigation