Skip to main content
Log in

Molecular distillation

Rigorous modeling and simulation for recovering vitamin E from vegetal oils

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

In this work, important results from simulations are presented, showing the potentiality of the molecular distillation process for recovering vitamin E from vegetal oils. Two types of molecular distillators are considered: falling film and centrifugal. The results emphasize the degree of recovery and factors that influence substantially the performance of the molecular distillators, such as feed flow rate, residence time, and process temperature. Moreover, they show that each type of molecular distillator enables one to operate under specific residence time and temperature. Therefore, a careful analysis must be made in order to determine the best equipment and operating conditions for obtaining products with high quality and concentration, and reduced problems of material thermal decomposition. Vitamin E (tocopherols) from vegetal oils, more specifically, from the deodorizer distillate of soya oil, was the studied case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

C :

Concentration, in mole fraction

C s :

Surface concentration, in mole fraction

d :

Molecular diameter (m)

D i :

Diffusion coefficient (m2/s)

dt :

Time interval (s)

E :

Evaporation rate (kg/m2·s)

E a :

Evaporation rate, (molecules/m2·s)

F :

Surface ratio

f i :

Distribution function

g :

Gravitational acceleration (m/s2), molecular relative velocity in the vapor phase (m/s)

h :

Distance between evaporator and condenser surfaces (m)

J ij :

Integral of the collision

k :

Anisotropy of vapor (equation 1), Boltzman constant (vapor phase)

L :

Evaporator length (m)

m :

Mass flow rate (kg/s)

M i :

Molar mass (kg/kg·mol)

M m :

Molecular mass (kg)

n :

Number of components in the liquid mixture, number of molecules (vapor phase)

N av :

Avogadro’s number

N c :

Number of collisions

N m :

Number of molecules

P :

System pressure (Pa)

P sat i :

Vapor pressure (Pa)

r :

Radial coordinate (m)

R :

Outer radius of condenser (m)

R g :

Universal gas constant, (J/kmol·K)

S :

Film thickness (m)

T :

Temperature (K)

T s :

Surface temperature (K)

u :

Velocity in x direction, liquid film or molecules (vapor phase) (m/s)

v :

Velocity in y direction, liquid film or molecules (vapor phase) (m/s)

w :

Velocity of the molecules in z direction (m/s)

W z :

Velocity in z (m/s)

x :

Distance along rotor surface (m)

y :

Distance perpendicular to rotor surface (m)

z :

Axial coordinate (m)

α:

Thermal diffusivity (m2/s)

β:

Mean path of vapor molecule (m)

ΔH :

Evaporation enthalpy (J/kg)

ø:

Cone half-angle (rad)

λ:

Thermal conductivity (W/m(K)

η:

Viscosity (Pa(s)

μ:

Cinematic viscosity (m2/s)

ρ:

Density (kg/m3)

Ω:

Rotor speed (rad/s)

References

  1. Batistella, C. B. (1999), PhD thesis, UNICAMP, LDPS Campinas-SP, Brazil.

    Google Scholar 

  2. Ooi, C. K., Choo, Y. M., Yap, S. C., Barison, Y., and Ong, A. S. H. (1994), AOCS Press 71, 423–426

    CAS  Google Scholar 

  3. Seetharamaiah, G. S. and Prabhakar, J. V. (1986), J. Food Sci. Technol. 23, 270–273.

    CAS  Google Scholar 

  4. Batistella, C. B., Maciel, M. R. W., and Maciel Filho, R. (2000), Computers Chemical Engineering 24, 1309–1315.

    Article  CAS  Google Scholar 

  5. Batistella, C. B. and Maciel, M. R. W. (1996), Computers Chemical Engineering 20 (Suppl.), S19-S24.

    Article  CAS  Google Scholar 

  6. Eitenmiller, R. R. (1997), Food Technology 51(5), 78–81.

    CAS  Google Scholar 

  7. Ramamuuthi, S. and McCurdy, A. R. (1993), AOCS 70, 287–295.

    Article  Google Scholar 

  8. Kawala, Z. and Stephan, K. (1989), Chem. Eng. Tech. 12, 406–413.

    Article  CAS  Google Scholar 

  9. Kawala, Z. (1983), Kinetik der Oberflachenverdamfung unter den Bedingungen der Molekulardestillation. Wydawnictwo Politechniki Wroclawskiej, Wroclaw, Poland.

    Google Scholar 

  10. Batistella, C. B. (1996), MS thesis, UNICAMP, LDPS Campinas-SP, Brazil.

    Google Scholar 

  11. Carnahan, B., Luther, H. A., and Wilkes J. O. (1969), Applied Numerical Methods, Wiley, NY, pp. 440–442.

    Google Scholar 

  12. Bhandarkar, M. and Ferron, J. R. (1988), Ind. Eng. Chem. Res. 27, 1016–1024.

    Article  CAS  Google Scholar 

  13. Ferron, J. R. (1986), Ind. Eng. Ch. Fund. 25, 594–602.

    Article  CAS  Google Scholar 

  14. Bird, G. A. (1970), Phys. Fluids 13, 2676–2681.

    Article  CAS  Google Scholar 

  15. Bhandarkar, M. and Ferron, J. R. (1991), Ind. Eng. Chem. Res. 30, 998–1007

    Article  CAS  Google Scholar 

  16. Bird, G. A. (1994), Molecular Gas Dynamics and the Direct Simulation of Gas Flows, Clarendon Press Oxford, UK.

    Google Scholar 

  17. Lutisan, J. and Cvengros, J. (1995), Chem. Eng. J. 56, 39–50.

    CAS  Google Scholar 

  18. Bird, G. A. (1976), Molecular Gas Dynamics, Clarendon Press, Oxford, UK.

    Google Scholar 

  19. Smith, F. (1967), US patent no. 3,335,154.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. R. Wolf Maciel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Batistella, C.B., Moraes, E.B., Filho, R.M. et al. Molecular distillation. Appl Biochem Biotechnol 98, 1187–1206 (2002). https://doi.org/10.1385/ABAB:98-100:1-9:1187

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/ABAB:98-100:1-9:1187

Index Entries

Navigation