Advertisement

Applied Biochemistry and Biotechnology

, Volume 97, Issue 1, pp 45–62 | Cite as

Archaeal tetraether lipids

Unique structures and applications
  • Michael J. Hanford
  • Tonya L. Peeples
Article

Abstract

The extremely stable biomolecules manufactured by organisms from extreme environments are of great scientific and engineering interest in the development of robust and stable industrial biocatalysts. Identification of molecules that impart stability under extremes will also have a profound impact on our understanding of cellular survival. This review discusses isolation and characterization of archaeal tetraethers as well as target technologies for tetraether lipid application. The isolation and characterization of archaeal tetraether lipids has led to some interesting applications improving on ester lipid technologies. Potential applications include novel lubricants, gene-delivery systems, monolayer lipid matrices for sensor devices, and protein stabilization. Following this review, patent abstracts and additional literature pertaining to the isolation, characterization, and application of archaeal membrane lipids are listed.

Index Entries

Tetraether archaea liposomes ether lipids glycerol dialkyl glycerol tetraether glycerol dialkyl nonitol tetraether extremophiles archaeosome proteoliposome Langmuir-Blodgett films 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adams, M. W. W. and Kelly, R. M. (1995), Chem. Eng. News 73, 32–42.Google Scholar
  2. 2.
    Kelly, R. M., Peeples, T. L., Halio, S. B., Rinker, K. R., and Duffaud, G. D. (1994), Ann. NY Acad. Sci. 745, 409–425.CrossRefGoogle Scholar
  3. 3.
    Lowe, S. E., Jain, M. K., and Zeikus, J. G. (1993), Microbiol. Rev. 2, 451–509.Google Scholar
  4. 4.
    Vieille, C., Burdette, D. S., and Zeikus, J. G. (1996), Biotechnol. Annu. Rev. 2, 1–83.CrossRefGoogle Scholar
  5. 5.
    Stryer (1988), Biochemistry, W. H. Freeman, New York.Google Scholar
  6. 6.
    Deamer, D. W. and Bramhall, J. (1986), Chem. Phys. Lipids 40, 167–188.CrossRefGoogle Scholar
  7. 7.
    Lolkema, J. S., Speelmans, G., and Konings, W. N. (1994), Biochim. Biophys. Acta 1187, 211–215.CrossRefGoogle Scholar
  8. 8.
    Komatsu, H. and Chong, P. L. (1998), Biochemistry 37, 107–115.CrossRefGoogle Scholar
  9. 9.
    Konings, W. N., Tolner, B., Speelmans, G., Elferink, M. G. L., de Wit, J. G., and Driessen, A. J. M. (1992), J. Bioener. Biomemb. 24, 601–609.CrossRefGoogle Scholar
  10. 10.
    McElhaney, R. N. and Souza, K. A. (1976), Biochim. Biophys. Acta 443, 348–359.CrossRefGoogle Scholar
  11. 11.
    Van de Vossenberg, J. L., Driessen, A. J., and Konings, W. N. (1998), Extremophiles 2, 163–170.CrossRefGoogle Scholar
  12. 12.
    Sugai, A., Sakuma, R., Fukuda, I., Kurosawa, N., Itoh, Y. H., Kon, K., Ando, S., and Itoh, T. (1995), Lipids 30, 339–344.CrossRefGoogle Scholar
  13. 13.
    Vilalta, I., Gliozzi, A., and Prats, M. (1996), Eur. J. Biochem. 240, 181–185.CrossRefGoogle Scholar
  14. 14.
    Gulik, A., Luzzati, V., De Rosa, M., and Gambacorta, A. (1985), J. Mol. Biol. 182, 131–149.CrossRefGoogle Scholar
  15. 15.
    Relini, A., Cassinadri, D., Mirghani, Z., Brandt, O., Gambacorta, A., Trincone, A., De Rosa, M., and Gliozzi, A. (1994), Biochim. Biophys. Acta 1194, 17–24.CrossRefGoogle Scholar
  16. 16.
    De Rosa, M., Morana, A., Riccio, A., Gambacorta, A., Trincone, A., and Incani, O. (1994), Biosens. Bioelectron. 9, 669–675.CrossRefGoogle Scholar
  17. 17.
    Van de Vossenberg, J., Dreissen, A. J., and Konings, W. N. (1998), Extremophiles 2, 163–170.CrossRefGoogle Scholar
  18. 18.
    Nicolaus, B., Trincone, A., Esposito, E., Vaccaro, M., Gambacorta, A., and De Rosa, M. (1990), Biochem. J. 266, 785–791.Google Scholar
  19. 19.
    De Rosa, M. and Gambacorta, A. (1988), Prog. Lipid Res. 27, 153–175.CrossRefGoogle Scholar
  20. 20.
    De Rosa, M., Gambacorta, A., and Gliozzi, A. (1986), Microbiol. Rev. 50, 70–80.Google Scholar
  21. 21.
    De Rosa, M., Gambacorta, A., Nicolaus, B., Chappe, B., and Albrecht, P. (1983), Biochim. Biophys. Acta 753, 249–256.Google Scholar
  22. 22.
    Lo, S. and Chang, E. L. (1990), Biochem. Biophys. Res. Commun. 167, 238–243.CrossRefGoogle Scholar
  23. 23.
    Gliozzi, A., Rolandi, R., De Rosa, M., and Gambacorta, A. (1983), J. Memb. Biol. 75, 45–56.CrossRefGoogle Scholar
  24. 24.
    Goldfine, H., Johnston, N. C., and Phillips, M. C. (1981), Biochemistry 20, 2908–2916.CrossRefGoogle Scholar
  25. 25.
    Slater, J. L., Huang, C., Adams, R., and Levin I. (1989), Biophys. J. 56, 243–252.Google Scholar
  26. 26.
    Gambacorta, A., Trincone, A., Nicolaus, B., Lama, L., and De Rosa, M. (1994), System. Appl. Microbiol. 16, 518–527.Google Scholar
  27. 27.
    Gulik, A., Luzzati, V., DeRosa, M., and Gambacorta, A. (1988), J. Mol. Biol. 201, 429–435.CrossRefGoogle Scholar
  28. 28.
    Ferrante, G., Ekiel, I., and Sprott, G. D. (1986), J. Biol. Chem. 261, 17,062–17,066.Google Scholar
  29. 29.
    Ferrante, G., Richards, J. C., and Sprott, G. D. (1990), Biochem. Cell. Biol. 68, 274–283.CrossRefGoogle Scholar
  30. 30.
    Nishihara, M., Morii, H., and Koga, Y. (1987), J. Biochem. (Tokyo) 101, 1007–1015.Google Scholar
  31. 31.
    Nishihara, M. and Koga, Y. (1997), J. Biochem. 122, 572–576.Google Scholar
  32. 32.
    Sprott, G. D., Ferrante, G., and Ekiel, I. (1994), Biochim. Biophys. Acta 1214, 234–242.Google Scholar
  33. 33.
    Swain, M., Brisson, J. R., Sprott, G. D., Cooper, F. P., and Patel, G. B. (1997), Biochim. Biophys. Acta 1345, 56–64.Google Scholar
  34. 34.
    Lo, S. L., Montague, C. E., and Chang, E. L. (1989), J. Lipid Res. 30, 944–949.Google Scholar
  35. 35.
    White, S. H. (1978), Biophys. J. 23, 337–347.Google Scholar
  36. 36.
    Langworthy, T. A. (1977), J. Bacteriol. 130, 1326–1332.Google Scholar
  37. 37.
    Nishihara, M. and Koga, Y. (1987), J. Biochem. (Tokyo) 101, 997–1005.Google Scholar
  38. 38.
    Bligh, E. and Dyer, W. (1959), Can. J. Biochem. Physiol. 37, 911–917.Google Scholar
  39. 39.
    Hedrick, D. B. and White, D. C. (1994), in Thermophiles (Archaea: A Laboratory Manual), Robb, F. T. et al., eds., Cold Spring Harbor Laboratories Press, Plainview, NY. “Protocol 10: Archaeal Lipid Analysis,” pp. 73–80.Google Scholar
  40. 40.
    Sprott, G. D., Tolson, D. L., and Patel, G. B. (1997), FEMS Microbiol. Lett. 154, 17–22.CrossRefGoogle Scholar
  41. 41.
    Fan, Q., Relini, A., Cassinadri, D., Gambacorta, A., and Gliozzi, A. (1995), Biochim. Biophys. Acta 1240, 83–88.CrossRefGoogle Scholar
  42. 42.
    Lattuati, A., Guezennec, J., Metzger, P., and Largeau, C. (1998), Lipids 33, 319–326.CrossRefGoogle Scholar
  43. 43.
    Elferink, M. G., de Wit, J. G., Demel, R., Driessen, A. J., and Konings, W. N. (1992), J. Biol. Chem. 267, 1375–1381.Google Scholar
  44. 44.
    Elferink, M. G., De Wit, J. G., Driessen, A. J., and Konings, W. N. (1993), Eur. J. Biochem. 214, 917–925.CrossRefGoogle Scholar
  45. 45.
    Elferink, M. G., Bosma, T., Lolkema, J. S., Gleiszner, M., Driessen, A. J., and Konings, W. N. (1995), Biochim. Biophys. Acta 1230, 31–37.CrossRefGoogle Scholar
  46. 46.
    Gliozzi, A., Robello, M., Relini, A., and Accardo, G. (1994), Biochim. Biophys. Acta 1189, 96–100.CrossRefGoogle Scholar
  47. 47.
    Sprott, G. D., Meloche, M., and Richards, J. C. (1991), J. Bacteriol. 173, 3907–3910.Google Scholar
  48. 48.
    Sprott, G. (1992), J. Bioenerg. Biomemb. 24, 555–566.CrossRefGoogle Scholar
  49. 49.
    Gambacorta, A., Gliozzi, A., and De Rosa, M. (1995), World J. Microbiol. Biotechnol. 11, 115–131.CrossRefGoogle Scholar
  50. 50.
    Brock, T., Brock, K., Belly, R., and Weiss, R. (1972), Arch. Mikrobiol. 84, 54–68.CrossRefGoogle Scholar
  51. 51.
    Grogan, D. (1989), J. Bacteriol. 171, 6710–6719.Google Scholar
  52. 52.
    Schicho, R. B., S. H., Blumentals, I. I., Peeples, T. L., Duffaud, G. D., and Kelly, R. M. (1995), in Archaea: A Laboratory Manual, vol., Robb, F., ed., Cold Spring Harbor Laboratory Press, Plainview, NY.Google Scholar
  53. 53.
    Chang, E. L. (1992), US patent, no. 5,098,588.Google Scholar
  54. 54.
    Beveridge, T. J., Choquet, C. G., Patel, G. B., and Sprott, G. D. (1993), J. Bacteriol. 175, 1191–1197.Google Scholar
  55. 55.
    Luzzati, V. (1997), Curr. Opin. Struct. Biol. 7, 661–668.CrossRefGoogle Scholar
  56. 56.
    Mirghani, Z., Bertoia, D., Gliozzi, A., De Rosa, M., and Gambacorta, A. (1990), Chem. Phys. Lipids 55, 85–96.CrossRefGoogle Scholar
  57. 57.
    Choquet, C. G., Patel, G. B., Beveridge, T. J., and Sprott, G. D. (1994), Appl. Microbiol. Biotechnol. 42, 375–384.Google Scholar
  58. 58.
    Patel, G. B. and Sprott, G. D. (1999), Crit. Rev. Biotechnol. 19, 317–357.CrossRefGoogle Scholar
  59. 59.
    Patel, G. B., Agnew, B. J., Deschatelets, L., Fleming, L. P., and Sprott, G. D. (2000), Int. J. Pharm. 194, 39–49.CrossRefGoogle Scholar
  60. 60.
    Sackmann, E. (1996), Science 271, 43–48.CrossRefGoogle Scholar
  61. 61.
    Elferink, M., van Breemen, J., Konings, W., Driessen, A., and Wilschut, J. (1997), Chem. Phys. Lipids 88, 37–43.CrossRefGoogle Scholar
  62. 62.
    Choquet, C. G., Patel, G. B., Beveridge, T. J., and Sprott, G. D. (1992), Appl. Environ. Microbiol. 58, 2894–2900.Google Scholar
  63. 63.
    Omri, A., Makabi-Panzu, B., Agnew, B. J., Sprott, G. D., and Patel, G. B. (2000), J. Drug Target 7, 383–392.CrossRefGoogle Scholar
  64. 64.
    Krishnan, L., Dicaire, C. J., Patel, G. B., and Sprott, G. D. (2000), Infect. Immun. 68, 54–63.CrossRefGoogle Scholar
  65. 65.
    Makabi-Panzu, B., Sprott, G. D., and Patel, G. D. (1998), Vaccine 16, 1504–1510.CrossRefGoogle Scholar
  66. 66.
    Metcalf, W. W., Zhang, J. K., Apolinario, E., Sowers, K. R., and Wolfe, R. S. (1997), Proc. Natl. Acad. Sci. USA 94, 2626–2631.CrossRefGoogle Scholar
  67. 67.
    Noll, K. M. and Vargas, M. (1997), Arch. Microbiol. 168, 73–80.CrossRefGoogle Scholar
  68. 68.
    Tumbula, D. L. and Whitman, W. B. (1999), Mol. Microbiol. 33, 1–7.CrossRefGoogle Scholar
  69. 69.
    Sowers, K. R. and Schreier, H. J. (1999), Trends Microbiol. 7, 212–219.CrossRefGoogle Scholar
  70. 70.
    Sprott, G. D., Patel, G. B., Choquet, C. G., and Ekiel, I. (1999), in United States Patent & Trademark Office, National Research Council of Canada.Google Scholar
  71. 71.
    Cavagnetto, F., Relini, A., Mirghani, Z., Gliozzi, A., Bertoia, D., and Gambacorta, A. (1992), Biochim. Biophys. Acta 1106, 273–281.CrossRefGoogle Scholar
  72. 72.
    Freisleben, H. J., Blocher, D., and Ring, K. (1992), Arch. Biochem. Biophys. 294, 418–426.CrossRefGoogle Scholar
  73. 73.
    Freisleben, H. J., Zwicker, K., Jezek, P., John, G., Bettin-Bogutzki, A., Ring, K., and Nawroth, T. (1995), Chem. Phys. Lipids 78, 137–147.CrossRefGoogle Scholar
  74. 74.
    In’t Veld, G., Elferink, M. G., Driessen, A. J., and Konings, W. N. (1992), Biochemistry 31, 12,493–12,499.CrossRefGoogle Scholar
  75. 75.
    Zasadzinski, J. A., Viswanathan, R., Madsen, L., Garnaes, J., and Schwartz, D. K. (1994), Science 263, 1726–1733.CrossRefGoogle Scholar
  76. 76.
    Stern, J., Freisleben, H. J., Janku, S., and Ring, K. (1992), Biochim. Biophys. Acta 1128, 227–236.Google Scholar
  77. 77.
    Mueller, P., Rudin, D. O., Tien, H. T., and Wescott, W. C. (1962), Circulation 26, 1167–1170.Google Scholar
  78. 78.
    Bykov, V. J. (1996), Biosens. Bioelectron. 11, 923–932.CrossRefGoogle Scholar
  79. 79.
    Nicolini, C. (1995), Biosens. Bioelectron. 10, 105–127.CrossRefGoogle Scholar
  80. 80.
    Schuster, B., Pum, D., and Sleytr, U. B. (1998), Biochim. Biophys. Acta 1369, 51–60.CrossRefGoogle Scholar
  81. 81.
    Bakowsky, U., Rothe, U., Antonopoulos, E., Martini, T., Henkel, L., and Freisleben, H. J. (2000), Chem. Phys. Lipids 105, 31–42.CrossRefGoogle Scholar
  82. 82.
    Dote, J., Barger, W., Behroozi, F., Chang, E., Lo, S.-L., Montague, C., and Nagumo, M. (1990), Langmuir 6, 1017–1023.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2002

Authors and Affiliations

  1. 1.Department of Chemical and Biochemical Engineering, Center for Biocatalysis and BioprocessingThe University of IowaIowa City

Personalised recommendations