Skip to main content
Log in

Cholesterol modulates amiodarone-membrane interactions in model and native membranes

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The effects of cholesterol, a lipid mostly found in the sarcolemmal membranes, on the interaction of amiodarone with synthetic models of dimyristoylphosphatidylcholine (DMPC) and with native models of mitochondria and brain microsomes was studied. Alterations on the structural order of lipids were assessed by fluorescence polarization of 1,6-diphenyl-1,3,5-hexatriene (DPH) probing the bilayer core, and of the propionic acid derivative 3-(p-(6-phenyl)-1,3,5-hexatrienyl)phenylpropionic acid (DPH-PA) probing the outer regions of the bilayer. As detected by the probes and according to classic observations, cholesterol progressively increased the molecular order in the fluid phase of DMPC. Additionally, it modulated the type and extension of amiodarone effects. For low cholesterol concentrations (≤10–15 mol%), amiodarone (50 µM) ordered DMPC bilayers and the effects were almost identical to those observed in pure DMPC. For higher cholesterol concentrations, amiodarone ordering effects decreased slightly and faded for cholesterol concentrations as high as 25 and 30 mol%, when detected by DPH-PA and DPH, respectively. Above these high cholesterol concentrations, a crossover from ordering to disordering effects of amiodarone was apparent, either in the upper region of the bilayer or the hydrophobic core. The effects of amiodarone in native membranes of mitochondria and brain microsomes, in which "native" cholesterol accounts for about 0 and 25 mol%, respectively, correlated reasonably with the results in models of synthetic lipids. There is a close relationship between cholesterol concentration and amiodarone effects, in either synthetic models or native model membranes. Therefore, it may be predicted that the lipid physicochemical properties regulated by cholesterol concentration will also modulate the effects of amiodarone in sarcolemma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rosenbourn, M. B., Chiale, P. A., Halpern, M. S., Nau, G. J., Przybylzky, J., Levi, R. J., Lazzari, J. O., and Elizari, M. V. (1976), Am. J. Cardiol. 38, 934–944.

    Article  Google Scholar 

  2. Gill, J., Heel, R. C., and Fitton, A. (1992), Drugs 43, 69–110.

    CAS  Google Scholar 

  3. Singh, B. N. (1999), Am. J. Cardiol. 84, 3R-10R.

    Article  CAS  Google Scholar 

  4. Vaugham-Williams, E. M. (1974), Adv. Drug Res. 9, 69–101.

    Google Scholar 

  5. Nattel, S. (1999), J. Cardiovasc. Electrophysiol. 10, 272–282.

    Article  CAS  Google Scholar 

  6. Kodama, I., Kamiya, K., and Toyama, J. (1999), Am. J. Cardiol. 84, 20R-28R.

    Article  CAS  Google Scholar 

  7. Pollak, P. T. (1999), Am. J. Cardiol. 84, 37R-45R.

    Article  CAS  Google Scholar 

  8. Kodama, I., Kamiya, K., and Toyama, J. (1997), Cardiovasc. Res. 35, 13–29.

    Article  CAS  Google Scholar 

  9. Singh, B. N. (1995), J. Cardiovasc. Electrophysiol. 6, 887–900.

    Article  CAS  Google Scholar 

  10. Nattel, S. and Singh, B. N. (1999), Am. J. Cardiol. 84, 11R-19R.

    Article  CAS  Google Scholar 

  11. Jendrasiak, G. L., McIntosh, T. J., Ribeiro, A., and Porter, R. S. (1990), Biochim. Biophys. Acta 1024, 19–31.

    Article  CAS  Google Scholar 

  12. Trumbore, M., Chester, D. W., Moring, J., Rhodes, D., and Herbette, L. G. (1988), Biophys. J. 54, 535–543.

    CAS  Google Scholar 

  13. Chatelain, P. and Laruel, R. (1985), J. Pharm. Sci. 74, 783–784

    Article  CAS  Google Scholar 

  14. Chatelain, P., Laruel, R., and Gillard, M. (1985), Biochem. Biophys. Res. Commun. 129, 148–154.

    Article  CAS  Google Scholar 

  15. Chatelain, P., Ferreira, J., Laruel, R., and Ruysschaert, J. M. (1986), Biochem. Pharmacol. 35, 3007–3013.

    Article  CAS  Google Scholar 

  16. Ferreira, J., Chatelain, P., Caspers, J., and Ruysschaert, J. M. (1987), Biochem. Pharmacol. 36, 4245–4250.

    Article  CAS  Google Scholar 

  17. Chatelain, P., Brottelle, R., and Laruel, R. (1987), Biochem. Pharmacol. 36, 1564, 1565.

    Article  CAS  Google Scholar 

  18. Chatelain, P., Laruel, R., Vic, P., and Brotelle, R. (1989), Biochem. Pharmacol. 38, 1231–1239.

    Article  CAS  Google Scholar 

  19. Fromenty, B., Fish, C., Berson, A., Letteron, P., Larrey, D., and Pessayre, D. (1990), J. Pharmacol. Exp. Ther. 255, 1377–1384.

    CAS  Google Scholar 

  20. Sautereau, A.-M., Tournaire, C., Suares, M., Tocanne, J. F., and Paillous, N. (1992), Biochem. Pharmacol. 43, 2559–2566.

    Article  CAS  Google Scholar 

  21. Antunes-Madeira, M. C., Videira, R. A., Klüppel, M. L. W., and Madeira, V. M. C. (1995), Int. J. Cardiol. 48, 211–218.

    Article  CAS  Google Scholar 

  22. Attal, Y., Cao, X. A., Perret, G., and Taillandier, E. (1997), Chem. Pharm. Bull. 45, 1317–1322.

    CAS  Google Scholar 

  23. Gray, D. F., Hanser, P. S., Doohan, M. M., Hool, L. C., and Rasmussen, H. H. (1997), Am. J. Physiol. 272, H1680-H1689.

    CAS  Google Scholar 

  24. Leifert, W. R., McMurchie, E. J., and Saint, D. A. (1999), J. Physiol. 520, 671–679.

    Article  CAS  Google Scholar 

  25. Rosa, S. M. J., Antunes-Madeira, M. C., Jurado, A. S., and Madeira, V. M. C. (2000), Appl. Biochem. Biotechnol. 87, 165–175.

    Article  CAS  Google Scholar 

  26. Rosa, S. M. J., Antunes-Madeira, M. C., Matos, M. J., Jurado, A. S., and Madeira, V. M. C. (2000), Biochim. Biophys. Acta 1487, 286–295.

    CAS  Google Scholar 

  27. Leifert, W. R., Jahangiri, A., and McMurchie, E. J. (2000), J. Nutr. Biochem. 11, 38–44.

    Article  CAS  Google Scholar 

  28. Lee, A. G. (1975), Prog. Biophys. Mol. Biol. 29, 5–56.

    CAS  Google Scholar 

  29. Tocanne, J. F., Cézanne, L., Lopez, A., Piknova, B., Schram, V., Tournier, J. F., and Welby, M. (1994), Chem. Phys. Lipids 73, 139–158.

    Article  CAS  Google Scholar 

  30. Sikkema, J., De Bont, J. A. M., and Poolman, B. (1995), Microbiol. Rev. 59, 201–222.

    CAS  Google Scholar 

  31. Mouritsen, O. G. and Jörgensen, K. (1998), Pharm. Res. 15, 1507–1509.

    Article  CAS  Google Scholar 

  32. Welti, R. and Glaser, M. (1994), Chem. Phys. Lipids 73, 121–137.

    Article  CAS  Google Scholar 

  33. Williams, E. E. (1998), Am. Zool. 38, 280–290.

    CAS  Google Scholar 

  34. Tibbits, G. F., Sasaki, M., Ikeda, M., Shimada, K., Tsuruhara, T., and Nagatomo, T. (1981), J. Mol. Cell. Cardiol. 13, 1051–1061.

    Article  CAS  Google Scholar 

  35. Antunes-Madeira, M. C. and Madeira, V. M. C. (1984), Biochim. Biophys. Acta 778, 49–56.

    Article  CAS  Google Scholar 

  36. Antunes-Madeira, M. C. and Madeira, V. M. C. (1989), Biochim. Biophys. Acta 982, 161–166.

    Article  CAS  Google Scholar 

  37. Keough, K. M. W. and Davis, P. J. (1979), Biochemistry 18, 1453–1459.

    Article  CAS  Google Scholar 

  38. Shinitzky, M. and Barenholz, Y. (1978), Biochim. Biophys. Acta 515, 367–394.

    CAS  Google Scholar 

  39. Litman, B. J. and Barenholz, Y. (1982), Methods Enzymol. 81, 678–685.

    Article  CAS  Google Scholar 

  40. Trotter, P. J. and Storch, J. (1989), Biochim. Biophys. Acta 982, 131–139.

    Article  CAS  Google Scholar 

  41. Kinosita, K., Kawato, S., and Ikegami, A. (1977), Biophys. J. 20, 289–305.

    CAS  Google Scholar 

  42. Ladbrooke, B. D., Williams, R. M., and Chapman, D. (1968), Biochim. Biophys. Acta 150, 333–340.

    Article  CAS  Google Scholar 

  43. Presti, F. T., Pace, R. J., and Chan, S. I. (1982), Biochemistry 21, 3831–3835.

    Article  CAS  Google Scholar 

  44. Ipsen, J. H., Karlström, G., Mouritsen, O. G., Wennerström, H., and Zuckermann, M. J. (1987), Biochim. Biophys. Acta 905, 162–172.

    Article  CAS  Google Scholar 

  45. Vist, M. R. and Davis, J. H. (1990), Biochemistry 29, 451–464.

    Article  CAS  Google Scholar 

  46. Mouritsen, O. G. and Jörgensen, K. (1994), Chem. Phys. Lipids 73, 3–25.

    Article  CAS  Google Scholar 

  47. Almeida, P. F. F., Vaz, W. L. C., and Thompson, T. E. (1992), Biochemistry 31, 6739–6747.

    Article  CAS  Google Scholar 

  48. Trandum, C., Wesh, P., Jörgensen, K., and Mouritsen, O. G. (2000), Biophys. J. 78, 2486–2492.

    Article  CAS  Google Scholar 

  49. Engelman, D. M. and Rothman, J. E. (1972), J. Biol. Chem. 247, 3694–3697.

    CAS  Google Scholar 

  50. Chatelain, P. and Brasseur, R. (1991), Biochem. Pharmacol. 41, 1639–1647.

    Article  CAS  Google Scholar 

  51. Van Dijck, P. W. M. (1979), Biochim. Biophys. Acta 555, 89–101.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vítor M. C. Madeira.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Antunes-Madeira, M.C., Videira, R.A. & Madeira, V.M.C. Cholesterol modulates amiodarone-membrane interactions in model and native membranes. Appl Biochem Biotechnol 97, 23–32 (2002). https://doi.org/10.1385/ABAB:97:1:23

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/ABAB:97:1:23

Index Entries

Navigation