Skip to main content
Log in

Continuous cultivation of dilute-acid hydrolysates to ethanol by immobilized Saccharomyces cerevisiae

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The continuous cultivation of immobilized Saccharomyces cerevisiae CBS 8066 on dilute-acid hydrolysates of forest residuals was investigated. The yeast cells were immobilized in 2–4% Ca-alginate beads. The 2% beads were not stable. However, the 3 and 4% beads were stable for at least 3 wk when an extra resource of calcium ions was available in the medium. The continuous cultivation of a dilute-acid hydrolysate by the immobilized cells at dilution rates of 0.3, 0.5, and 0.6 h−1 resulted in 86, 83, and 79% sugar consumption, respectively, and an ethanol yield between 0.45 and 0.48 g/g. The hydrolysate was fermentable at a dilution rate of 0.1 h−1 in a free-cell system but washed out at a dilution rate of 0.2 h−1. The continuous cultivation of a more inhibiting hydrolysate was not successful by either free- or immobilized-cell systems even at a low dilution rate of 0.07 h−1. However, when the hydrolysate was overlimed, it was fermentable by the immobilized cells at a dilution rate of 0.2 h−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Harris, E., Beglinger, E., Hajny, G., and Sherrard, E. (1945), Ind. Eng. Chem. 37, 12–23.

    Article  CAS  Google Scholar 

  2. Qureshi, N. and Manderson, G. (1995), Energy Sources 17, 241–265.

    Article  CAS  Google Scholar 

  3. Taherzadeh, M. J., Eklund, R., Gustafsson, L., Niklasson, C., and Lidén, G. (1997), Ind. Eng. Chem. Res. 36, 4659–4665.

    Article  CAS  Google Scholar 

  4. Larsson, S., Quintana-Sainz, A., Reimann, A., Nilvebrant, N. O., and Jonsson, L. J. (2000), Appl. Biochem. Biotechnol. 84–6, 617–632.

    Article  Google Scholar 

  5. Taherzadeh, M. J., Niklasson, C., and Lidén, G. (1999), Bioresour. Technol. 69, 59–66.

    Article  CAS  Google Scholar 

  6. Taherzadeh, M. J., Niklasson, C., and Lidén, G. (2000), Biotechnol. Bioeng. 69, 330–338.

    Article  CAS  Google Scholar 

  7. Nilsson, A., Taherzadeh, M. J., and Lidén, G. (2001), J. Biotechnol. 89, 41–54.

    Article  CAS  Google Scholar 

  8. Chung, I. S. and Lee, Y. Y. (1985), Biotechnol. Bioeng. 27, 308–315.

    Article  CAS  Google Scholar 

  9. Bajpai, P. and Margaritis, A. (1985), Enzyme Microb. Technol. 7, 462–464.

    Article  CAS  Google Scholar 

  10. Báles, V., Polakovic, M., and Stefuca, V. (1991), Chem. Biochem. Eng. 5, 53–57.

    Google Scholar 

  11. Lee, W. and Huang, C. (1995), Enzyme Microb. Technol. 17, 79–84.

    Article  CAS  Google Scholar 

  12. Abbi, M., Kuhad, R. C., and Singh, A. (1996), Process Biochem. 31, 555–560.

    Article  CAS  Google Scholar 

  13. Barron, N., Marchant, R., McHale, L., and McHale, A. (1996), World J. Microbiol. Biotechnol. 12, 103,104.

    Article  CAS  Google Scholar 

  14. Buzás, Z., Dallmann, K., and Szajani, B. (1989), Biotechnol. Bioeng. 34, 882–884.

    Article  Google Scholar 

  15. Sun, M., Nghiem, N., Davison, B., Webb, O., and Bienkowski, P. (1998), Appl. Biochem. Biotechnol. 70–72, 429–439.

    Google Scholar 

  16. Converti, A. (1994), Starch/Stärke 46, 260–265.

    Article  CAS  Google Scholar 

  17. Nigam, J. (2000), J. Biotechnol. 80, 189–193.

    Article  CAS  Google Scholar 

  18. Perego, P. (1994), Bioprocess Eng. 10, 35–41.

    Article  Google Scholar 

  19. Qureshi, N. and Manderson, G. J. (1991), J. Ind. Microbiol. 7, 117–122.

    Article  CAS  Google Scholar 

  20. Roukas, T. (1994), Biotechnol. Bioeng. 43, 189–194.

    Article  CAS  Google Scholar 

  21. Roukas, T. (1996), J. Food Eng. 27, 87–96.

    Article  Google Scholar 

  22. Sanchez, E., Alhadeff, E., RochaLeao, M., Fernandes, R., and Pereira, N. (1996), Biotechnol. Lett. 18, 91–94.

    Article  CAS  Google Scholar 

  23. Taipa, M. A., Cabral, J. M. S., and Santos, H. (1993), Biotechnol. Bioeng. 41, 647–653.

    Article  CAS  Google Scholar 

  24. Abbi, M., Kuhad, R. C., and Singh, A. (1996), J. Ind. Microbiol. 17, 20–23.

    Article  CAS  Google Scholar 

  25. van Iersel, M., Brouwer-Post, E., Rombouts, F., and Abee, T. (2000), Enzyme Microb. Technol. 26, 602–607.

    Article  Google Scholar 

  26. Jamuna, R. and Ramakrishna, S. V. (1992), Biomass Bioeng. 3, 117–119.

    Article  CAS  Google Scholar 

  27. Szajáni, B., Buzás, Z., Dallman, K., Gimesi, I., Krisch, J., and Tóth, M. (1996), Appl. Microbiol. Biotechnol. 46, 122–125.

    Article  Google Scholar 

  28. Krishnan, M. S., Blanco, M., Shattuck, C. K., Nghiem, N. P., and Davison, B. H. (2000), Appl. Biochem. Biotechnol. 84–6, 525–541.

    Article  Google Scholar 

  29. Kim, K., Kim, K., and Lee, J. (1992), in Biochemical Engineering for 2001, Asia-Pacific Conference, Furusaki, S., Endo, I., and Matsuno, R., eds., Springer-Verlag, Tokyo, pp. 447–451.

    Google Scholar 

  30. Kierstan, M. and Bucke, C. (1977), Biotechnol. Bioeng. 19, 387–397.

    Article  CAS  Google Scholar 

  31. Roukas, T. (1995), Food Biotechnol. 9, 175–188.

    Article  CAS  Google Scholar 

  32. Nagashima, M., Azuma, M., Noguchi, S., Inuzuka, K., and Samejima, H. (1987), Methods Enzymol. 136, 394–405.

    CAS  Google Scholar 

  33. Taherzadeh, M. J., Lidén, G., Gustafsson, L., and Niklasson, C. (1996), Appl. Microbiol. Biotechnol. 46, 176–182.

    Article  CAS  Google Scholar 

  34. Larsson, S., Reimann, A., Nilvebrant, N. O., and Jonsson, L. J. (1999), Appl. Biochem. Biotechnol. 77–79, 91–103.

    Article  Google Scholar 

  35. Vivas, N., LonvaudFunel, A., and Glories, Y. (1997), Food Microbiol. 14, 291–299.

    Article  CAS  Google Scholar 

  36. Janzowski, C., Glaab, V., Samimi, E., Schlatter, J., and Eisenbrand, G. (2000), Food Chem. Toxicol. 38, 801–809.

    Article  CAS  Google Scholar 

  37. Gibello, A., Allende, J. L., Mengs, G., Alonso, R., Ferrer, E., and Martin, M. (1998), Biocatal. Biotransform. 16, 291–306.

    Article  CAS  Google Scholar 

  38. Speirs, E. D., Halling, P. J., and McNeil, B. (1995), Appl. Microbiol. Biotechnol. 43, 440–444.

    Article  CAS  Google Scholar 

  39. Wang, H. N., Seki, M., and Furusaki, S. (1995), J. Chem. Eng. Jpn. 28, 480–482.

    Article  CAS  Google Scholar 

  40. Nath, S. and Chand, S. (1996), J. Chem. Technol. Biotechnol. 66, 286–292.

    Article  CAS  Google Scholar 

  41. Verduyn, C., Postma, E., Scheffers, W. A., and van Dijken, J. P. (1990), J. Gen. Microbiol. 136, 395–403.

    CAS  Google Scholar 

  42. Horváth, I. S., Taherzadeh, M. J., Niklasson, C., and Lidén, G. (2001), Biotechnol. Bioeng., in press.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad J. Taherzadeh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Taherzadeh, M.J., Millati, R. & Niklasson, C. Continuous cultivation of dilute-acid hydrolysates to ethanol by immobilized Saccharomyces cerevisiae . Appl Biochem Biotechnol 95, 45–57 (2001). https://doi.org/10.1385/ABAB:95:1:45

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/ABAB:95:1:45

Index Entries

Navigation