Skip to main content
Log in

Use of reversible denaturation for adsorptive immobilization of urease

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Urease was chosen as a model multimeric protein to investigate the utility of reversible denaturation for immobilization to a hydrophobic support. Of the various procedures investigated, acidic denaturation provided the highest degree of immobilization and enzymatic activity with lowering of K m (apparent). Exposure of hydrophobic clusters in the protein molecule induced by the acidic pH environment was confirmed by fluorescence studies using 8-anilino-1-naphtalene-sulfonate as a hydrophobic-reporter probe. The catalytic potential of the enzyme at low pH values was dramatically improved with significant heat and pH stability enhancement on immobilization. Furthermore, the immobilized preparation was used successfully in continuous catalytic transformations. Based on the results presented in this article and a recent report involving a relatively more simple monomeric protein, it is suggested that reversible denaturation may be of general utility for immobilization of proteins, which are not normally adsorbed on hydrophobic supports.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dixon, N. E., Gazzola, C., Blakeley, R. L., and Zerner, B. (1975), J. Am. Chem. Soc. 97, 4131–4133.

    Article  CAS  Google Scholar 

  2. Takashima, K., Suga, T., and Mamiya, G. (1988), Eur. J. Biochem. 175, 151–165.

    Article  Google Scholar 

  3. Varner, J. E. (1960), in The Enzymes, 2nd ed., Boyer, P. D., Lardy, H., and Myback, K., eds., Academic, New York, pp. 27–31.

    Google Scholar 

  4. Mobley, H. L. T. and Husinger, R. P. (1989), Microbiol. Rev. 53, 85–108.

    CAS  Google Scholar 

  5. Bowie, J. U. and Sauer, R. T. (1989), Biochemistry 28, 7139–7143.

    Article  CAS  Google Scholar 

  6. Sehgal, P. P. and Naylor, A. W. (1966), Plant Physiol. 41, 567–572.

    CAS  Google Scholar 

  7. Gorin, G., Chin, C. C., and Wang, S. F. (1968), Experientia 15, 685–687.

    Article  Google Scholar 

  8. Fishbein, W. N., Nagarajan, K., and Scurzi, W. (1969), J. Biol. Chem. 18, 7870–7877.

    Google Scholar 

  9. Blattler, D. P., Contaxis, C. C., and Reithel, F. J. (1967), Nature 216, 274, 275.

    Article  CAS  Google Scholar 

  10. Reithel, F. J. and Robbins, J. E. (1967), Arch. Biochem. Biophy. 120, 158–164.

    Article  CAS  Google Scholar 

  11. Omar, S. and Beauregard, M. (1994), Biochem. Biophys. Res. Commun. 201, 1096.

    Article  CAS  Google Scholar 

  12. Hirai, M., Kawai-Hirai, R., Hirai, T., and Ueki, T. (1993), Eur. J. Biochem. 215, 55, 61.

    Article  CAS  Google Scholar 

  13. Omar, S. and Beauregard, M. (1995), J. Biotechnol. 39, 221–228.

    Article  CAS  Google Scholar 

  14. Dixon, N. E., Hinds, J. A., Fihelly, A. K., Gazzola, C., Winzor, D. J., Blekely, R. L., and Zerner, B. (1980), Can. J. Biochem. 58, 1323–1334.

    CAS  Google Scholar 

  15. Peters, C. D., Walsh, A. G., and Beauregard, M. (1997), Biochem. Cell Biol. 75, 55–61.

    Article  CAS  Google Scholar 

  16. Dobson, C. M., Evans, P. A., and Radford, S. E. (1994), Trends Biochem. Sci. 19, 31–37.

    Article  CAS  Google Scholar 

  17. Beauregard, M. (1996), Analyt. Biochem. 234, 233, 234.

    Article  CAS  Google Scholar 

  18. Azari, F. and Nemat-Gorgani, M. (1999), Biotechnol. Bioeng. 62, 193.

    Article  CAS  Google Scholar 

  19. Nemat-Gorgani, M. and Karimian, K. (1982), Eur. J. Biochem. 123, 601–609.

    Article  CAS  Google Scholar 

  20. Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. (1951), J. Biol. Chem. 193, 265–275.

    CAS  Google Scholar 

  21. Mejbaum-Katzenellenbogen, W. and Dobryszycra, W. M. (1959), Clinica Chemica Acta 4, 515.

    Article  Google Scholar 

  22. Bergmeyer, H. U. (1983), Methods of Enzymatic Analysis, vol. 2, VCH Verlagsgesellschaft, Federal Republic of Germany.

    Google Scholar 

  23. Blattler, D. P. and Gorin, G. (1969), Can. J. Biochem. 47, 989–993.

    Article  CAS  Google Scholar 

  24. Tanis, R. J. and Naylor, A. W. (1968), Biochem. J. 108, 771–777.

    CAS  Google Scholar 

  25. Nemat-Gorgani, M. and Karimian, K. (1986), Biotechnol. Bioeng. 26, 1037–1043.

    Article  Google Scholar 

  26. Rodionova, N. A., Semisotnov, G. V., Kutyshenko, V. P., Uverskii, V. N., Bolotina, I. A., Bychkova, V. E., and Ptitsynn, O. B. (1989), J. Mol. Biol. 23, 683–692.

    CAS  Google Scholar 

  27. Semisotnov, G. V., Uversky, V. N., Sokolovsky, I. V., Gutin, A. M., Razgulyaev, O. I., and Rodionova, N. A. (1990), J. Mol. Biol. 213, 561–568.

    Article  CAS  Google Scholar 

  28. Semisotnov, G. V., Rodionova, N. A., Razgulyaev, O. I., Uversky, V. N., Gripas’, A. F., and Gilmanshin, R. I. (1991), Biopolymers 31, 119–128.

    Article  CAS  Google Scholar 

  29. Arakawa, T. and Kenny, W. C. (1988), Int. J. Pept. Protein Res. 31, 468–473.

    Article  CAS  Google Scholar 

  30. Eynard, L., Lametti, S., Relkin, P., and Bonomi, F. (1992), J. Agric. Food Chem. 40, 1731–1736.

    Article  CAS  Google Scholar 

  31. Wu, F. Y. and Wu, C. (1978), Biochemistry 17, 138–144.

    Article  CAS  Google Scholar 

  32. Prestrelski, S. J., Tedeschi, N., Arakawa, T., and Carpenter, J. F. (1992), Biophys. J. 65, 661–671.

    Article  Google Scholar 

  33. Cleland, J. L. and Randolph, T. W. (1992), J. Biol. Chem. 267, 3147–3153.

    CAS  Google Scholar 

  34. Speed, M. A., Wang, D. I. C., and King, J. (1995), Protein Sci. 4, 900–908.

    Article  CAS  Google Scholar 

  35. Defelippis, M. R., Alter, L. A., Pekar, A. H., Havel, H. A., and Brems, D. N. (1992), Biochemistry 32, 1555–1562.

    Article  Google Scholar 

  36. Pecora, R. (1985), in Dynamic Light Scattering, Pecora, R., ed., Plenum, New York, pp. 11–34.

    Google Scholar 

  37. Matulis, D. and Lovrien, R. (1998), Biophys. J. 74, 422–429.

    CAS  Google Scholar 

  38. Matulis, D., Baumann, C. G., Bloomfield, V. A., and Lovrien, R. E. (1999), Biopolymers 49, 451–458.

    Article  CAS  Google Scholar 

  39. Baum, J., Dobson, C. M., Evans, P. A., and Hanley, C. (1989), Biochemistry 28, 7–13.

    Article  CAS  Google Scholar 

  40. Dryden, D. and Weir, M. P. (1991), Biochim. Biophys. Acta 1078, 94–100.

    CAS  Google Scholar 

  41. Goto, Y. and Fink, A. L. (1989), Biochemistry 28, 945–952.

    Article  CAS  Google Scholar 

  42. Contaxis, C. C. and Fishbein, W. N. (1971), J. Biol. Chem. 246, 677–685.

    CAS  Google Scholar 

  43. Fishbein, W. N., Nagarajan, K., and Scurzi, W. (1973), J. Biol. Chem. 248, 7870–7877.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohsen Nemat-Gorgani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Azari, F., Hosseinkhani, S. & Nemat-Gorgani, M. Use of reversible denaturation for adsorptive immobilization of urease. Appl Biochem Biotechnol 94, 265–277 (2001). https://doi.org/10.1385/ABAB:94:3:265

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/ABAB:94:3:265

Index Entries

Navigation