Skip to main content
Log in

Modeling of saccharide utilization in primary beer fermentation with yeasts immobilized in calcium alginate

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Immobilized beer fermentation was studied using an industrial bottom-fermenting yeast strain Saccharomyces cerevisiae. The yeast cells were immobilized in 2.5% calcium alginate gel and used for brewing in a five-vessel cascade reactor. The fermentation was performed at 15°C at various flow rates. A nonstructured mathematical model was developed to simulate the performance of continuous primary fermentation of lager beer. The model was based on the following variables: maltose, maltotriose, glucose, fructose, ethanol, and cell concentration. Experimental values of these variables were determined in samples taken at regular intervals. For experimental data fitting a nonlinear regression was used. Substrate consumption was characterized by specific substrate consumption rate and saturation constant. The values of these two parameters were optimized for all four substrates. Inhibition effects of substrates and product were analyzed using various inhibition patterns. Only the inhibition effect of maltose on maltose consumption was clearly identified. A good-fitting relationship for maltose inhibition was found, and inhibition constants were calculated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

a,b :

constants characterizing maltose consumption inhibition by maltose (g/L) (dimensionless)

E :

ethanol concentration (g/L)

F :

fructose concentration (g/L)

f :

volumetric flow rate (L/h)

G :

glucose concentration (g/L)

k :

saturation constant, subscripts M, MT, G, or F indicating substrate (g/L)

M :

maltose concentration (g/L)

MT :

maltotriose concentration (g/L)

r :

specific rate of substrate consumption or ethanol production (indicated by subscript) (g/[gDW·h])

t :

time (h)

V :

working volume of vessel including gel volume (L)

X :

biomass concentration expressed per working volume (gDW/L)

Y :

yield coefficient

DW:

dry weight

max:

maximum rate

n,n−1:

vessel (1–5)

References

  1. Masschelein, C. A., Ryder, D. S., and Simon, J. P. (1994), Crit. Rev. Biotechnol. 14, 155–177.

    Article  CAS  Google Scholar 

  2. White, F. H. and Portno, A. D. (1978), J. Inst. Brew. 84, 228–230.

    CAS  Google Scholar 

  3. Norton, S., Watson, K., and D’Amore, T. (1995), Appl. Microbiol. Biotechnol. 43, 18–24.

    Article  CAS  Google Scholar 

  4. Doran, P. M. and Bailey, J. E. (1986), Biotechnol. Bioeng. 28, 73–87.

    Article  CAS  Google Scholar 

  5. van de Winkel, L., van Bevern, P. C., and Masschelein, C. A. (1991), in Proceedings of 23rd Congress of European Brewing Convention, Elsevier, New York, pp. 577–584.

    Google Scholar 

  6. Pajunen, E., Mäkinen, V., and Gisler, R. (1987), in Proceedings of 21st Congress of European Brewing Convention, Elsevier, New York, pp. 441–448.

    Google Scholar 

  7. Scott, J. A., O’Reilly, A. M., and Kirkhope, S. (1995), Biotechnol. Tech. 9, 305–310.

    Article  CAS  Google Scholar 

  8. Yamauchi, Y., Okamoto, T., and Nakanishi, K. (1994), J. Ferment. Bioeng. 78, 443–449.

    Article  CAS  Google Scholar 

  9. Yamauchi, Y., Okamoto, T., and Nakanishi, K. (1995), Appl. Biochem. Biotechnol. 53, 261–276.

    CAS  Google Scholar 

  10. Yamauchi, Y., Okamoto, T., and Nakanishi, K. (1995), Appl. Biochem. Biotechnol. 53, 245–259.

    CAS  Google Scholar 

  11. Yamauchi, Y., Okamoto, T., and Kashihara, T. (1995), Appl. Biochem. Biotechnol. 53, 277–283.

    CAS  Google Scholar 

  12. Yamauchi, Y., Okamoto, T., and Inoue, T. (1995), J. Biotechnol. 38, 101–108.

    Article  CAS  Google Scholar 

  13. Yamauchi, Y., Okamoto, T., and Noguchi, K. (1995), J. Biotechnol. 38, 109–116.

    Article  CAS  Google Scholar 

  14. Russell, I. and Stewart, G. G. (1992), Food Technol. 46, 146–150.

    CAS  Google Scholar 

  15. Lommi, H., Gronquist, A., and Pajunen, E. (1990), Food Technol. 44, 128–133.

    Google Scholar 

  16. Masschelein, C. A. (1989), in Biotechnology Applications in Beverage Production, Cantarelli, C. and Lanzarini, G., eds., Elsevier, New York, pp. 77–91.

    Google Scholar 

  17. Curin, J., Pardonova, B., Polednikova, M., Sedova, H., and Kahler, M. (1987), in Proceedings of 21st Congress of European Brewing Convention, Elsevier, New York, pp. 433–440.

    Google Scholar 

  18. Ryder, D. S. and Masschelein, C. A. (1985), J. Am. Soc. Brew. Chem. 43, 66–72.

    CAS  Google Scholar 

  19. Cop, J., Dyon, D., Iserentant, D., and Masschelein, C. A. (1989), in Proceedings of 22nd Congress of European Brewing Convention, Elsevier, New York, pp. 315–322.

    Google Scholar 

  20. Tzeng, J. W., Fan, L. S., Gan, Y. R., and Hu, T. T. (1991), Biotechnol. Bioeng. 38, 1253–1258.

    Article  CAS  Google Scholar 

  21. Dourado, A., Goma, G., Albuqurque, U., and Sevely, G. (1987), Biotechnol. Bioeng. 29, 195–203.

    Article  CAS  Google Scholar 

  22. Anselme, M. J. and Tedder, D. W. (1987), Biotechnol. Bioeng. 30, 736–745.

    Article  CAS  Google Scholar 

  23. Black, G. M., Webb, C., Mattews, T. M., and Atkinson, T. (1984), Biotechnol. Bioeng. 26, 134–141.

    Article  CAS  Google Scholar 

  24. de Andres-Toro, B., Giron-Sierra, J. M., Lopez-Orozco, J. A., Fernandez-Conde, C., Penaido, J. M., and Garcia-Ochoa, F. (1998), Math. Comput. Simulat. 48, 65–74.

    Article  Google Scholar 

  25. Volf, P., Votruba, J., and Basarova, G. (1992), Kvasny Prumysl 38, 102–105.

    Google Scholar 

  26. Virkajarvi, I., Lindborg, K., Kronlof, J., and Pajunen, E. (1999), Monatschrift fuer Brauwissenschaft 52, 9–12, 25–28.

    CAS  Google Scholar 

  27. Smogrovicova, D., Domeny, Z., Gemeiner, P., Malovikova, A., and Sturdik, E. (1997), Biotechnol. Technol. 11, 261–264.

    Article  CAS  Google Scholar 

  28. Domeny, Z., Smogrovicova, D., Gemeiner, P., Sturdik, E., Patkova, J., and Malovikova, A. (1998), Biotechnol. Lett. 11, 1041–1043.

    Article  Google Scholar 

  29. Smogrovicova, D., Domeny, Z., and Svitel, J. (1998), Food Biotechnol. 12, 123–137.

    Article  CAS  Google Scholar 

  30. Smogrovicova, D. and Domeny, Z. (1999), Proc. Biochem. 34, 785–794.

    Article  CAS  Google Scholar 

  31. Fry, J. C., ed. (1993), Biological Data Analysis: A Practical Approach, IRL Press at Oxford University Press, Oxford, England.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juraj Švitel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Šmogrovičová, D., Dömény, Z. & Švitel, J. Modeling of saccharide utilization in primary beer fermentation with yeasts immobilized in calcium alginate. Appl Biochem Biotechnol 94, 147–158 (2001). https://doi.org/10.1385/ABAB:94:2:147

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/ABAB:94:2:147

Index Entries

Navigation