Skip to main content
Log in

Fermentation of xylose into acetic acid by Clostridium thermoaceticum

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

For optimum fermentation, fermenting xylose into acetic acid by Clostridium thermoaceticum (ATCC 49707) requires adaptation of the strain to xylose medium. Exposed to a mixture of glucose and xylose, it preferentially consumesxylose over glucose. The initial concentration of xylose in the medium affects the final concentration and the yield of acetic acid. Batch fermentation of 20 g/L of xylose with 5g/L of yeast extract as the nitrogen source results in a maximum acetate concentration of 15.2 g/L and yield of 0.76 g of acid/g of xylose. Corn steep liquor (CLS) is a good substitute for yeast extract and results in similar fermentation profiles. The organism consumes fructose, xylose, and glucose from a mixture of sugars in batch fermentation. Arabinose, mannose, and galactose are consumed only slightly. This organism loses viability on fed-batch operation, even with supplementation of all the required nutrients. In fed-batch fermentation with CSL supplementation, d-xylulose (an intermediate in the xylose metabolic pathway) accumulates in large quantities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Johnson, K. L. (1994), Cryotech Deicing Technologies, Fort Madison, IA.

  2. Ljungdahl, L. G. (1983), Formation of Acetate Using Homoacetate Fermenting Anaerobic Bacteria in Organic Chemicals from Biomass, Menlo Park, CA.

  3. Sugaya, K. and Jones, J. L. (1986), Biotechnol. Bioeng. 28, 678–683.

    Article  CAS  Google Scholar 

  4. Wijitra, K. (1994), MS thesis, University of Illinois, Urbana.

  5. Fontaine, F. E., Peterson, W. H., McCoy, E., and Johnson, M. J. (1942), J. Bacteriol. 43, 701–715.

    CAS  Google Scholar 

  6. Andreesen, J. R., Schaupp, A., Neurauter, C., Brown, A., and Ljundahl, L. G. (1973) J. Bacteriol. 114, 743–751.

    CAS  Google Scholar 

  7. Brumm, P. J. (1988), Biotechnol. Bioeng. 32, 444–450.

    Article  CAS  Google Scholar 

  8. Parekh, S. R. and Cheryan, M. (1990), Process Biochem. Int. 25, 117–121.

    CAS  Google Scholar 

  9. Parekh, S. R. and Cheryan, M. (1990), Biotechnol. Lett. 16(2), 139–142.

    Article  Google Scholar 

  10. Parekh, S. R. and Cheryan, M. (1990), Appl. Microbiol. Biotechnol. 36, 384–387.

    Google Scholar 

  11. Stephanopoulous, G. and San, K. Y. (1985), Biotechnol. Prog. 1(4), 250–259.

    Article  Google Scholar 

  12. Liggett, R. W. and Koffler, H. (1948), Bacteriol. Rev. 12, 297–311.

    CAS  Google Scholar 

  13. Shah, M. M. and Cheryan, M. (1995), J. Ind. Microbiol. 15, 424–428.

    Article  CAS  Google Scholar 

  14. Bock, S. A., Fox, S. L., and Gibbons, W. R. (1997), Biotechnol. Appl. Biochem. 25, 117–125.

    CAS  Google Scholar 

  15. Sikyta, B. (1983), Methods in Ind. Microbiol. Wiley, New York.

    Google Scholar 

  16. Larsson, S., Palmquist, E., and Nilvebrant, N., (1999), EnzymeMicrobiol. Technol. 24(3/4), 151–159.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Y. Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Balasubramanian, N., Seok Kim, J. & Lee, Y.Y. Fermentation of xylose into acetic acid by Clostridium thermoaceticum . Appl Biochem Biotechnol 91, 367–376 (2001). https://doi.org/10.1385/ABAB:91-93:1-9:367

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/ABAB:91-93:1-9:367

Index Entries

Navigation