Skip to main content
Log in

Nonproteolytic cleavage of aspartyl proline bonds in the cellulosomal scaffoldin subunit from Clostridium thermocellum

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Previous work from our group [Morag (Morgenstern), E., Bayer, E. A., and Lamed, R. (1991), Appl. Biochem. Biotechnol. 30, 129–136] has demonstrated an anomalous electrophoretic mobility pattern for scaffoldin, the 210-kDa cellulosome-integrating subunit of Clostridium thermocellum. Subsequent evidence [Morag, E., Bayer, E. A., and Lamed, R. (1992), Appl. Biochem. Biotechnol. 33, 205–217] indicated that the effect could be attributed to a nonproteolytic fragmentation of the subunit into a defined series of lowermolecular-weight bands. In the present work, a recombinant segment of the scaffoldin subunit was employed to determine the site(s) of bond breakage. An Asp-Pro sequence within the cohesin domain was identified to be the sensitive peptide bond. This sequence appears quite frequently in the large cellulosomal proteins, and the labile bond may be related to an as yet undescribed physiological role in the hydrolysis of cellulose by cellulosomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lamed, R. and Bayer, E. A. (1988), Advan. Appl. Microbiol. 33, 1–46.

    Google Scholar 

  2. Felix, C. R. and Ljungdahl, L. G. (1993), Annu. Rev. Microbiol. 47, 791–819.

    CAS  Google Scholar 

  3. Bayer, E. A., Morag, E., and Lamed, R. (1994), Trends Biotechnol. 12, 378–386.

    Article  Google Scholar 

  4. Béguin, P. and Lemaire, M. (1996), Crit. Rev. Biochem. Mol. Biol. 31, 201–236.

    Google Scholar 

  5. Morag (Morgenstern), E., Bayer, E. A., and Lamed, R. (1991), Appl. Biochem. Biotechnol. 30, 129–136.

    Google Scholar 

  6. Morag, E., Bayer, E. A., and Lamed, R. (1992), Appl. Biochem. Biotechnol. 33, 205–217.

    CAS  Google Scholar 

  7. Morag, E., Bayer, E. A., and Lamed, R. (1992), Enzyme Microb. Technol. 14, 289–292.

    Article  CAS  Google Scholar 

  8. Yaron, S., Morag, E., Bayer, E. A., Lamed, R., and Shoham, Y. (1995), FEBS Lett. 360, 121–124.

    Article  CAS  Google Scholar 

  9. Matsudaira, P. (1987), J. Biol. Chem. 262, 10,035–10,038.

    CAS  Google Scholar 

  10. Gerngross, U. T., Romaniec, M. P. M., Kobayashi, T., Huskisson, N. S., and Demain, A. L. (1993), Mol. Microbiol. 8, 325–334.

    Article  CAS  Google Scholar 

  11. Shimon, L. J. W., Bayer, E. A., Morag, E., Lamed, R., Yaron, S., Shoham, Y., and Frolow, F. (1997), Structure 5, 381–390.

    Article  CAS  Google Scholar 

  12. Tavares, G. A., Béguin, P., and Alzari, P. M. (1997), J. Mol. Biol. 273, 701–713.

    Article  CAS  Google Scholar 

  13. Piszkiewicz, D., Landon, M., and Smith, E. L. (1970), Biochem. Biophys. Res. Commun. 40, 1173–1178.

    Article  CAS  Google Scholar 

  14. Bhat, K. M. and Wood, T. M. (1992), Carbohydrate Research 227, 293–300.

    Article  CAS  Google Scholar 

  15. Salamitou, S., Tokatlidis, K., Béguin, P., and Aubert, J.-P. (1992), FEBS Lett. 304, 89–92.

    Article  CAS  Google Scholar 

  16. Ahsan, M. M., Kimura, T., Karita, S., Sakka, K., and Ohmiya, K. (1996), J. Bacteriol. 178, 5732–5740.

    CAS  Google Scholar 

  17. Zverlov, V., Velikodvorskaya, G. V., Schwarz, W. H., Bronnenmeier, K., Kellermann, J., and Staudenbauer, W. L. (1998), J. Bacteriol. 180, 3091–3099.

    CAS  Google Scholar 

  18. Shoseyov, O., Hamamoto, T., Foong, F., and Doi, R. H. (1990), Biochem. Biophys. Res. Commun. 169, 667–672.

    Article  CAS  Google Scholar 

  19. Pagès, S., Belaich, A., Tardif, C., Reverbel-Leroy, C., Gaudin, C., and Belaich, J.-P. (1996), J. Bacteriol. 178, 2279–2286.

    Google Scholar 

  20. Kakiuchi, M., Isui, A., Suzuki, K., Fujino, T., Fujino, E., Kimura, T., Karita, S., Sakka, K., and Ohmiya, K. (1998), J. Bacteriol. 180, 4303–4308.

    CAS  Google Scholar 

  21. Schultz, J. (1967), Methods Enzymol. 11, 255–263.

    Article  CAS  Google Scholar 

  22. Hiller, Y., Bayer, E. A., and Wilchek, M. (1991), Biochem. J. 278, 573–585.

    CAS  Google Scholar 

  23. Choi, S. K. and Ljungdahl, L. G. (1996), Biochemistry 35, 4897–4905.

    Article  CAS  Google Scholar 

  24. Bayer, E. A. and Lamed, R. (1992), Biodegradation 3, 171–188.

    Article  CAS  Google Scholar 

  25. Bayer, E. A., Morag, E., Wilchek, M., Lamed, R., Yaron, S., and Shoham, Y. (1995), Carbohydrate Bioengineering, Elsevier Science B.V., Amsterdam, pp. 251–259.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edward A. Bayer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lamed, R., Kenig, R., Morag, E. et al. Nonproteolytic cleavage of aspartyl proline bonds in the cellulosomal scaffoldin subunit from Clostridium thermocellum . Appl Biochem Biotechnol 90, 67–73 (2001). https://doi.org/10.1385/ABAB:90:1:67

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/ABAB:90:1:67

Index Entries

Navigation