Skip to main content
Log in

Direct antigen capture by soluble scFv antibodies

A method for detection, characterization, and determination of affinity

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

For ease of detection, soluble forms of phage-displayed scFv antibodies are usually expressed with a tag, e.g., c-myc or His (Histidine). The binding is then assayed by a monoclonal antibody to the tag. In this article, we describe the use of biotinylated antigen for detecting soluble scFv antibodies without utilizing the peptide tag detection system. The scFv antibodies were against the oncoplacental antigen heat-stable alkaline phosphatase (HSAP). The method essentially consisted of either reverse Western or antigen capture enzyme-linked immunosorbent assay (ELISA). In the reverse Western, periplasmic extract was electrophoresed, and binding to biotinylated antigen was detected by the detection system based on streptavidin-horseradish peroxidase. The antigen capture ELISA utilized the binding of periplasmic extract to a polystyrene plate. We have also demonstrated the use of antigen capture ELISA for studying specificity and affinity of the selected clones. Although these techniques have been developed for antibodies to HSAP, they have general utility for phage expression systems without a peptide tag.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nissim, A., Hoogenboom, H. R., Tomlinson, I. M., Flynn, G., Midgley, C., Lane, D., and Winter, G. (1994), EMBO J. 13, 692–698.

    CAS  Google Scholar 

  2. Harrison, J. L., Williams, S. C., Winter, G., and Nissim, A. (1996), Methods Enzymol. 267, 83–109.

    Article  CAS  Google Scholar 

  3. Lindner, P., Bauer, K., Krebber, A., Nieba, L., Kremmer, E., Krebber, C., Honegger, A., Klinger, B., Mocikat, R., and Pluckthun, A. (1997), Biotechniques 22, 140–149.

    CAS  Google Scholar 

  4. Mack, M., Riethmuller, G., and Kufer, P. (1995), Proc. Natl. Acad. Sci. USA 92, 7021–7025.

    Article  CAS  Google Scholar 

  5. Lee, W. S., Kao, C. C., Bryant, G. O., Liu, X., and Berk, A. J. (1991), Cell 67, 365–376.

    Article  CAS  Google Scholar 

  6. Bischoff, K. M., Shi, L., and Kennelly, P. J. (1998), Anal. Biochem. 260, 1–17.

    Article  CAS  Google Scholar 

  7. Epenetos, A. A., Munro, A. J., Tucker, D. F., Gregory, W., Duncan, W., MacDougall, R. H., Fause, M., Travers, P., and Bodmer, W. F. (1985), Br. J. Cancer 51, 641–644.

    CAS  Google Scholar 

  8. Fishman, W. H. (1990), Clin. Biochem. 23, 99–104.

    Article  CAS  Google Scholar 

  9. Hirano, K., Domar, U. M., Yamamoto, H., Brehmer Andersson, E. E., Wahren, B. E., and Stigbrand, T. I. (1987), Cancer Res. 47, 2543–2546.

    CAS  Google Scholar 

  10. Koshida, K. and Wahren, B. (1990), Urol. Res. 18, 87–92.

    Article  CAS  Google Scholar 

  11. Nouwen, E. J., Buyssens, N., and DeBroe, M. E. (1990), Cell Tissue Res. 260, 321–335.

    Article  CAS  Google Scholar 

  12. Vergote, I., Onsrud, M., and Nustad, K. (1987), Obstet. Gynecol. 69, 228–232.

    CAS  Google Scholar 

  13. Kala, M., Bajaj, K., and Sinha, S. (1997), Anal. Biochem. 254, 263–266.

    Article  CAS  Google Scholar 

  14. Marin, M., Brockly, F., Noel, D., Julan, M. E., Piechaczyk, M. B., Hua, D. T., Gu, Z. J., and Piechaczyk, M. (1995), Hybridoma 14, 443–451.

    Article  CAS  Google Scholar 

  15. Laemmli, U. K. (1970), Nature (London) 227, 680–685.

    Article  CAS  Google Scholar 

  16. Marks, J. D. (1995), in Antibody Engineering, Borrebaeck, C. A. K., ed., Oxford University Press, New York, pp. 53–88.

    Google Scholar 

  17. Muller, R. (1980), J. Immunol. Methods 34, 345–352.

    Article  CAS  Google Scholar 

  18. Kazemier, B., de Haard, H., Boender, P., van Gemen, B., and Hoogenboom, H. (1996), J. Immunol. Methods 194, 201–209.

    Article  CAS  Google Scholar 

  19. Goldberg, M. E. and Djavadi-Ohaniance, L. (1993), Curr. Opin. Immunol. 5, 278–281.

    Article  CAS  Google Scholar 

  20. Van Heyningen, V., Brock, D. J. H., and Van Heyningen, S. (1983), J. Immunol. Methods 62, 147–153.

    Google Scholar 

  21. Friguet, B., Chaffotte, A. F., Djavadi-Ohaniance, L., and Goldberg, M. E. (1985), J. Immunol. Methods 77, 305–319.

    Article  CAS  Google Scholar 

  22. Hardy, F., Djavadi-Ohaniance, L., and Goldberg, M. (1997), J. Immunol. Methods 200, 155–159.

    Article  CAS  Google Scholar 

  23. Akerstrom, B., Nilson, B. H., Hoogenboom, H. R., and Bjorck, L. (1994), J. Immunol. Methods 177, 151–163.

    Article  CAS  Google Scholar 

  24. Loomans, E. E., Roelen, A. J., Van Damme, H. S., Bloemeers, H. P., Gribnau, T. C., and Schielen, W. J. (1995), J. Immunol. Methods 184, 207–217.

    Article  CAS  Google Scholar 

  25. Nieba, L., Krebber, A., and Pluckthun, A. (1996), Anal. Biochem. 234, 155–165.

    Article  CAS  Google Scholar 

  26. Schuck, P. (1996), Biophys. J. 70, 1230–1249.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subrata Sinha.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kala, M., Bajaj, K. & Sinha, S. Direct antigen capture by soluble scFv antibodies. Appl Biochem Biotechnol 90, 11–22 (2001). https://doi.org/10.1385/ABAB:90:1:11

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/ABAB:90:1:11

Index Entries

Navigation