Skip to main content
Log in

A novel phosphoramidite method for automated synthesis of oligonucleotides on glass supports for biosensor development

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Two protocols for functionalization of glass supports with hexaethylene glycol (HEG)-linked oligonucleotides were developed. The first method (standard amidite protocol) made use of the 2-cyanoethyl-phosphoramidite derivative of 4,4′-dimethoxytrityl-protected HEG. This was first coupled to the support by standard solid-phase phosphoramidite chemistry followed by extension with a thymidylic acid icosanucleotide. Stepwise addition of the linker phosphoramidite graduated at 1% (relative to the total sites available) perstep at 50°C resulted in an optimal yield of immobilized oligonucleotides at a density of 2.24 × 1010 strands/mm2. This observed loading maximum lies well below the theoretical maximum loading owing to nonspecific adsorption of HEG on the glass and subsequent blocking of reactive sites. Surface loadings as high as 3.73 × 1010/mm2 and of excellent sequence quality were achieved with a reverse amidite protocol. The support was first modified into a 2-cyanoethyl-N,N-diisopropylphosphoramidite analog followed by coupling with 4,4′-dimethoxytrityl-protected HEG. This protocol is conveniently available when using a conventional DNA synthesizer. The reverse amidite protocol allowed for control of the surface loading at values suitable for subsequent analytical applications that make use of immobilized oligonucleotides as probes for selective hybridization of sample nucleic acids of unknown sequence and concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Matthews, J. A. and Kricka, L. J. (1988), Anal. Biochem. 169, 1–25.

    Article  CAS  Google Scholar 

  2. Chrisey, L. A., O’Ferrall, C. E., Spargo, B. J., Dulcey, C. S., and Calvert, J. M. (1996), Nucleic Acids Res. 24, 3040–3047.

    Article  CAS  Google Scholar 

  3. Piunno, P. A. E., Krull, U. J., Hudson, R. H. E., Damha, M. J., and Cohen, H. (1995), Anal. Chim. 67, 2635–2643.

    Article  CAS  Google Scholar 

  4. Abel, A. P., Weller, M. G., Duveneck, G. L., Ehrat, M., and Widmer, H. M. (1996), Anal. Chem. 68, 2905–2912.

    Article  CAS  Google Scholar 

  5. Smith, L. J., Kricka, L., and Krull, U. J. (1995), Gen. Anal. 12, 33–37.

    CAS  Google Scholar 

  6. Guo, Z., Guilfoyle, R. A., Thiel, A. J., Wang, R., and Smith, L. M. (1994), Nucleic Acids Res. 22, 5456–5465.

    Article  CAS  Google Scholar 

  7. Zhang, Y., Coyne, M. Y., Will, S. G., Levenson, C. H., and Kawasaki, E. S. (1991), Nucleic Acids Res. 19, 3929–3933.

    Article  CAS  Google Scholar 

  8. Shchepinov, M. S., Case-Green, S. C., and Southern, E. M. (1997), Nucleic Acids Res. 25, 1155–1161.

    Article  CAS  Google Scholar 

  9. Maskos, U. and Southern, E. M. (1992), Nucleic Acids Res. 20, 1679–1684.

    Article  CAS  Google Scholar 

  10. McGall, G. H., Barone, A. D., Diggelmann, M., Fodor, S. P. A., Gentalen, E., and Ngo, N. (1996), J. Amer. Chem. Soc. 119, 5081–5090.

    Article  Google Scholar 

  11. Uddin, A. H., Piunno, P. A. E., Hudson, R. H. E., Damha, M. J., and Krull, U. J. (1997), Nucleic Acids Res. 25, 4139–4146.

    Article  CAS  Google Scholar 

  12. Rajur, B. S., Robles, J., Wiederholt, K., Kuimelis, R. G., and McLaughlin, L. W. (1997), J. Org. Chem. 62, 523–529.

    Article  CAS  Google Scholar 

  13. Polushin, N. N., Morocho, A. M., Chen, B., and Cohen, J. S. (1994), Nucleic Acids Res. 22, 639–645.

    Article  CAS  Google Scholar 

  14. Hudson, R. H. E. and Damha, M. J. (1993), J. Amer. Chem. Soc. 115, 2119–2124.

    Article  CAS  Google Scholar 

  15. Cohen, G., Deutsch, J., Fineberg, J., and Levine, A. (1997), Nucleic Acids Res. 25, 911–912.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sojka, B., Piunno, P.A.E., Wust, C.C. et al. A novel phosphoramidite method for automated synthesis of oligonucleotides on glass supports for biosensor development. Appl Biochem Biotechnol 89, 85–103 (2000). https://doi.org/10.1385/ABAB:89:1:85

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/ABAB:89:1:85

Index Entries

Navigation