Skip to main content
Log in

Cellulose and hemicellulose hydrolysis models for application to current and novel pretreatment processes

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Acids catalyze the hydrolysis of cellulose and hemicellulose to produce sugars that organisms can ferment to ethanol and other products. However, advanced low- and no-acid technologies are critical if we are to reduce bioethanol costs to be competitive as a pure fuel. We believe carbohy drate oligomers play a key role in explaining the performance of such hydrolysis processes and that kinetic models would help us understand their role. Various investigations have developed reaction rate expressions based on an Arrhenius temperature dependence that is first order in substrate concentration and close to first order in acid concentration. In this article, we evaluate these existing hydrolysis models with the goal of providing a foundation for a unified model that can predict performance of both current and novel pretreatment process configurations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wyman, C. E. (1994), Bioresour. Technol. 50 3–16.

    Article  CAS  Google Scholar 

  2. Lynd, L. R., Cushman, J. H., Nichols, R. J., and Wyman, C. E. (1991), Science 251, 1318–1323.

    Article  CAS  Google Scholar 

  3. Lynd, L. R., Elander, R. T., and Wyman, C. E. (1996), Appl. Biochem. Biotechnol. 57/58, 741–760.

    Article  CAS  Google Scholar 

  4. Hinman, N. D., Schell, D. J., Riley, C. J., Bergeron, P. W., and Walter, P. J. (1992), Appl. Biochem. Biotechnol. 34/35, 639–649.

    Google Scholar 

  5. Torget, R., Hatzis, C., Hayward, T. K., Hsu, T.-A., and Philippidis, G. D. (1996), Appl. Biochem. Biotechnol. 57/58, 85–101.

    CAS  Google Scholar 

  6. van Walsum, G. P., Allen, S. G., Spencer, M. J., Laser, M. S., Antal, M. J., and Lynd, L. R. (1996), Appl. Biochem. Biotechnol. 57/58, 157–170.

    Google Scholar 

  7. Maloney, M. T., Chapman, T. W., and Baker, A. J. (1985), Biotechnol. Bioeng. 27, 355–361.

    Article  CAS  Google Scholar 

  8. Brigham, J. S., Adney, W. S., and Himmel, M. E. (1996), in Handbook on Bioethanol: Production and Utilization, Wyman, C., ed., Taylor and Francis, Washington, DC, pp. 119–141.

    Google Scholar 

  9. Burns, D. S., Ooshima, H., and Converse, A. O. (1989), Appl. Biochem. Biotechnol. 20/21, 79–94.

    Article  Google Scholar 

  10. Hsu, T. A. (1996), in Handbook on Bioethanol: Production and Utilization, Wyman, C., ed., Taylor and Francis, Washington, DC, pp. 179–212.

    Google Scholar 

  11. Baugh, K. D., and McCarty, P. L. (1988), Biotechnol. Bioeng 31, 50–61.

    Article  CAS  Google Scholar 

  12. Ranganathan, S., MacDonald, D. S., and Bakhshi, N. N. (1985), Can J. Chem. Eng. 63, 840–844.

    CAS  Google Scholar 

  13. Bhandari, N., Macdonald, D. G., and Bakhshi, N. N. (1984), Biotechnol. Bioeng. 26, 320–327.

    Article  CAS  Google Scholar 

  14. Maloney, M. T., Chapman, T. W., and Baker, A. J. (1986), Biotechnol. Prog. 2(4), 192–202.

    CAS  Google Scholar 

  15. Cahela, D. R., Lee, Y. Y., and Chambers, R. P. (1983), Biotechnol. Bioeng. 25, 3–17.

    Article  CAS  Google Scholar 

  16. Kim, S. B., and Lee, Y. Y. (1987), Biotechnol. Bioeng. Symp. No. 17, 71–84.

    Google Scholar 

  17. Saeman, J. F. (1945), Ind. Eng. Chem. 37, 42–52.

    Article  Google Scholar 

  18. Converse, A. O., Kwarteng, K., Grethlein, H. E., and Ooshima, H. (1989), Appl. Biochem. Biotechnol. 20/21, 63–77.

    Google Scholar 

  19. Kobayashi, T., and Sakai, Y. (1956), Bull. Agr. Chem. Soc. Japan 20, 1–7.

    CAS  Google Scholar 

  20. Esteghlalian, A., Hashimoto, A. G., Fenske, J. J., and Penner, M. H. (1997), Bioresour. Technol. 59, 129–136.

    Article  CAS  Google Scholar 

  21. Eken-Saracoglu, N., Mutlu, S. F., Dilmac, G., and Cavusoglu, H. (1998), Bioresour. Technol. 65, 29–33.

    Article  CAS  Google Scholar 

  22. Mehlberg, R. and Tsao, G. T. (1979), 178th ACS National Meeting Proceedings, American Chemical Society, Washington, DC.

  23. McKibbins, S. W., Harris, J. F., Saeman, J. F., and Neill, W. K. (1962), Forest Products J. 12, 17–23.

    CAS  Google Scholar 

  24. Malester, I. A., Green, M., and Shelef, G. (1992), Ind. Eng. Chem. Res. 31, 1998–2000.

    Article  CAS  Google Scholar 

  25. Bergeron, P., Benham, C., and Werdene, P. (1989), Appl. Biochem. Biotechnol. 20/21, 119–134.

    Google Scholar 

  26. Church, J. A., and Woolridge, D. (1981), Ind. Eng. Chem. Prod. Res. Dev. 20, 371–378.

    Article  CAS  Google Scholar 

  27. Fagan, R. D., Grethlein, H. E., Converse, A. O., and Porteous, A. (1971), Environ. Sci. Technol. 5(6), 545–547.

    Article  CAS  Google Scholar 

  28. Dadach, Z., and Kaliaguine, S. (1993), Can., J. Chem. Eng. 71, 880–891.

    Article  CAS  Google Scholar 

  29. McParland, J. J., Grethlein, H. E., and Converse, A. O. (1982), Solar Energy 28(1), 55–63.

    Article  CAS  Google Scholar 

  30. Thompson D. R., and Grethlin, H. E. (1979), I & EC 18, 166–169.

    CAS  Google Scholar 

  31. Abatzoglou, N., Bouchard, J., and Chornet, E. (1986), Can J. Chem. Eng. 64, 781–786.

    CAS  Google Scholar 

  32. Brennan, A. H., and Schell, D. J. (1986), SERI report #PR-232-2876, Solar Energy Research Institute, Golden, CO.

    Google Scholar 

  33. Wright, J. D. (1983), SERI report #TR-231-1714, Solar Energy Research Institute, Golden, CO.

    Google Scholar 

  34. Conner, A. H., Wood, B. F., Hill, C. G., and Harris, J. F. (1986), in Cellulose: Structure, Modification and Hydrolysis, Young, R. A. and Rowell, R. M., eds., J. Wiley & Sons, New York, pp. 281–296.

    Google Scholar 

  35. Bouchard, J., Abatzoglou, N., Chornet, E., and Overend, R. P. (1989), Wood Sci. Technol. 23, 333–355.

    Article  Google Scholar 

  36. Mok, W.S.-L., and Antal, M. J., Jr. (1992), Ind. Chem. Eng. Res. 31, 94–100.

    Article  CAS  Google Scholar 

  37. Harris, J. F., Baker, A. J., Conner, A. J., Jeffries, T. W., Minor, J. L., Petterson, R. C., Scott, R. W., Springer, E. L., Wegner, T. H., and Zerbe, J.I. (1985), Gen. Tech. Rep. FPL-45, U.S. Department of Agriculture, Forest Service, Forest Products Laboratory, Madison, WI.

    Google Scholar 

  38. Kubikova, J., Zemann, A., Krkoska, P., and Bobleter, O. (1996), Tappi J. 79(7), 163–169.

    CAS  Google Scholar 

  39. Overend, R. P., and Chornet, E. (1987), Phil. Trans. R. Soc. Lond A321, 523–536.

    Article  CAS  Google Scholar 

  40. Abatzoglou, N., Chornet, E., Belkacemi, K., and Overend, R. P. (1992), Chem. Eng. Sci. 47(5), 1109–1122.

    Article  CAS  Google Scholar 

  41. Torget, R. W., Kidam, K. L., Hsu, T.-A., Philippidis, G. P., and Wyman, C.E.U.S., Patent 5,705,369, January 6, 1998.

  42. Torget, R. W., Kidam, K. L., Hsu, T.-A., Philippidis, G. P., and Wyman, C.E.U.S. Patent 5,503,996, April 2, 1996.

  43. Torget, R. W., Kidam, K. L., Hsu, T.-A., Philippidis, G. P., and Wyman, C.E.U.S. Patent 5,424,417, June 13, 1995.

  44. Bobleter, O. (1994), Prog. Polym. Sci. 19, 797–841.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles E. Wyman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jacobsen, S.E., Wyman, C.E. Cellulose and hemicellulose hydrolysis models for application to current and novel pretreatment processes. Appl Biochem Biotechnol 84, 81–96 (2000). https://doi.org/10.1385/ABAB:84-86:1-9:81

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/ABAB:84-86:1-9:81

Index Entries

Navigation