Skip to main content
Log in

Mathematical modeling of controlled-release systems of herbicides using lignins as matrices

A Review

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The herbicides applied in soils can be easily lost, owing to leaching, volatilization, and bio-and photodegradation. Controlled-release systemsusing polymeric matrices claim to solve these problems. The movement of the herbicides in the soilisalso an important phenomenon to be studied in order to evaluate the loss processes. The development of mathematical models is a relevantrequirement for simulation and optimization of such systems. This study reviews mathematical models as an initial step for modeling data obtained for controlled-release systems of herbicides (diuron, 2,4-dichlorophenoxyacetic acid, and ametryn) using sugarcane bagasse lignin as a polymeric matrix. The release kinetic studies were carried out using several acceptorsystems includinga water bath, soil, and soil-packed columns. Generally, these models take into account phenomena such as unsteady-state mass transfer by diffusion (Fick'slaw) and convection, consumption by several processes, and partitioning processes, resulting in partial differential equations with respect to time and space variables.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wilkins, R. M. (1990), Controlled Delivery of Crop-Protection Agents, Taylor & Francis, London, pp. 149–165.

    Google Scholar 

  2. Cotrim, A. R., Souza, J. A., Ferraz, A., Silva, F. T., and Wilkins, R. M. (1994), in Third Brazilian Symposium on the Chemistry of Lignins and Other Wood Components, vol. 4, Piló-Veloso, D. and Ruggiero, R., eds., UFMG, Belo Horizonte, Brazil, pp. 278–281.

    Google Scholar 

  3. Silva, F. T. and Wilkins, R. M. (1992), in Second Brazilian Symposium on the Chemistry of Lignins and Other Wood Components, vol. 3, Durán, N. and Esposito, E., eds., UNICAMP, Campinas, Brazil, pp. 165–172.

    Google Scholar 

  4. Silva, F. T., Pereira, C. A., Cotrim, A. R., Ferraz, A., and Wilkins, R. M. (1994), in Third Brazilian Symposium on the Chemistry of Lignins and Other Wood Components, vol. 4, Piló-Veloso, D. and Ruggiero, R., eds., UFMG, Belo Horizonte, Brazil, pp. 265–268.

    Google Scholar 

  5. Souza, J. A. (1994), MSc thesis, UNICAMP, Campinas, Brazil.

  6. Ferraz, A., Souza, J. A., and Silva, F. T. (1992), in Second Brazilian Symposium on the Chemistry of Lignins and Other Wood Components, vol. 3, Durán, N. and Esposito, E., eds., UNICAMP, Campinas, Brazil, pp. 173–177.

    Google Scholar 

  7. Cotteril, J. V., Wilkins, R. M., and Silva, F. T. (1995), J. Controlled Release 40, 133–142.

    Article  Google Scholar 

  8. Costa, S. M., Gonçalves, A. R., Pereira, C. A., Cotrim, A. R., and Silva, F. T. (1996), XXXVI Congresso Brasileiro de Química (abstracts), São Paulo, Brazil.

  9. Pereira, C. A. (1995), MSc thesis, FAENQUIL, Lorena, Brazil.

  10. Giuliano, A. D. (1995), MSc thesis, USP, São Carlos, Brazil.

  11. Fengel, D. and Wegener, G. (1989), Wood: Chemistry, Ultrastructure and Reactions, Walter de Gruyter, New York.

    Google Scholar 

  12. Meister, J. J. (1996), in Chemical Modification of Lignocellulosic Materials, Hon, D. N.-S., ed., Marcel Dekker, New York, pp. 129–157.

    Google Scholar 

  13. Kirk, T. K., Higushi, T., and Chang, H. (1981), Lignin Biodegradation: Microbiology, Chemistry and Potential Applications, vol. 1, CRC Press, Boca Raton, FL, p. 5.

    Google Scholar 

  14. Associação Nacional dos Fabricantes de Papel e Celulose (ANFPC) (1995) Annual Report.

  15. Bjorkman, A. (1956), Svensk Papperstidn 59, 477–485.

    CAS  Google Scholar 

  16. Pew, J. C. (1957), Tappi J. 40, 553–558.

    CAS  Google Scholar 

  17. Nord, F. F. and Schubert, W. J. (1951), Holzforschung 5, 1.

    Article  CAS  Google Scholar 

  18. Nord, F. F. and Schubert, W. J. (1957), Tappi J. 40, 285.

    CAS  Google Scholar 

  19. Azis, S. and Sarkanen, K. V. (1989), Tappi J. 72, 169–175.

    Google Scholar 

  20. Silva, F. T. (1995), PhD thesis, UNICAMP, Campinas, Brazil.

  21. Ferraz, A., Souza, J. A., Silva, F. T., Gonçalves, A. R., Bruns, R. E., and Cotrim, A. R. (1997), J. Agric. Food Chem. 45, 1001–1005.

    Article  CAS  Google Scholar 

  22. Cho, C. S., Park, K. P., Lee, K. C., and Kale, D. D. (1990), Indian J. Technol. 28, 24–26.

    CAS  Google Scholar 

  23. Riggle, B. N. and Penner D. (1988). Weed Sci. 36, 131–136.

    CAS  Google Scholar 

  24. Riggle, B. N. and Penner D. (1987), Weed Sci. 35, 243–246.

    CAS  Google Scholar 

  25. Riggle, B. N. and Penner D. (1992), J. Agric. Food Chem. 40, 1710–1712.

    Article  CAS  Google Scholar 

  26. Lewis, D. H. and Cowsar, D. R. (1997), in Controlled Release Pesticides, Sher, R. H. and Gould, R. F., eds., ACSSymposium Series 53, American Chemical Society, Washington, DC, pp. 1–15.

    Google Scholar 

  27. Collins, R. L. (1983), in Controlled-Release Technology: Bioeng ineering Aspects, Das, K. G., ed., John Wiley & Sons, New York, pp. 15–22.

    Google Scholar 

  28. Schwartz, J. B., Simonelli, A. P., and Higuchi, W. I. (1968), J. Pharm. Sci. 57, 274–277.

    Article  CAS  Google Scholar 

  29. Higuchi, T. (1961), J. Pharm. Sci. 50, 874–876.

    Article  CAS  Google Scholar 

  30. Simonelli, A. P. and Higuchi, W. I. (1966), J. Pharm. Sci. 55, 1230–1234.

    Article  Google Scholar 

  31. Lapidus, H. and Lordi, N. G. (1966), J. Pharm. Sci. 55, 841–843.

    Google Scholar 

  32. Papadokostaki, K. G. and Petropoulos, J. H. (1998) J. Controlled Release 54, 251–264.

    Article  CAS  Google Scholar 

  33. Farhadieh, B., Borodkin, S., and Budenhagen, J. D. (1971), J. Pharm. Sci. 60, 212–215.

    Article  CAS  Google Scholar 

  34. Farhadieh, B., Borodkin, S., and Budenhagen, J. D. (1971), J. Pharm. Sci. 60, 209–212.

    Article  CAS  Google Scholar 

  35. Siegel, R. A. (1989), in Controlled Release of Drugs: Polymers and Aggregate Systems, Rosoff, M. ed., VCH Publishers, New York, pp. 1–9.

    Google Scholar 

  36. Zeoli, L. T. and Kydonieus, A. F. (1983), in Controlled-Release Technology: Bioengineering Aspects, Das, K. G., ed., John Wiley & Sons, New York, pp. 61–120.

    Google Scholar 

  37. Higuchi, T. (1963), J. Pharm. Sci. 52, 1145–1149.

    Article  CAS  Google Scholar 

  38. Miller, E. S. and Peppas, N. A. (1983), Chem. Eng. Commun. 22, 303.

    Article  CAS  Google Scholar 

  39. Juvy, W. A. and Ghodrati, M. (1989), in Reactions and Movement of Organic Chemicals in Soils, vol. 11, Sawhney, B. L. and Brown K., eds., SSSA Special Publication Number 22, Soil Society of America and American Society of Agronomy, Madison, WI, pp. 271–304.

    Google Scholar 

  40. Weber, J. B., and Miller, C. T. (1989), in Reactions and Movement of Organic Chemicals in Soils, Sawhney, B. L. and Brown, K., eds., vol. 12, SSSA Special Publication Number 22, Soil Society of America and American Society of Agronomy, Madison, WI, pp. 305–334

    Google Scholar 

  41. Harper, L. A., White, A. W., Jr., Bruce, R. R., Thomas, A. W., and Leonard, R. A. (1976), J. Environ. Quality 5, 236–242.

    Article  CAS  Google Scholar 

  42. Glotfelty, D. E., and Schomburg, C. J. (1989), in Reactions and Movement of Organic Chemicals in Soils, Sawhney, B. L. and Brown, K., eds., vol. 7, SSSA Special Publication Number 22, Soil Society of America and American Society of Agronomy, Madison, WI, pp. 181–207.

    Google Scholar 

  43. Hamaker, J. W. and Thompson (1972), in Organic Chemicals in the Soil Environment, Hamaker, J. W., ed., Marcel Dekker, New York, pp. 49–144.

    Google Scholar 

  44. Karickhoff, S. W., Brown, D. S., and Scott, T. A. (1979), Water Res. 13, 241–248.

    Article  CAS  Google Scholar 

  45. Valentine, R. L. (1986), in Vadose Zone Modeling of Organic Pollutants, Hern, S. M. and Meloncon, S., eds., Lewis Publ., Chelsea, MI, pp. 223–243.

    Google Scholar 

  46. Miller, G. C., Herbert, V. R., and Miller, W. W. (1989), in Reactions and Movement of Organic Chemicals in Soils, Sawhney, B. L. and Brown, K., eds., vol. 5, SSSA Special Publication Number 22, Soil Society of America and American Society of Agronomy, Nladison, WI, pp. 99–110.

    Google Scholar 

  47. Mabey, W. and Mill, T. (1978), J. Phys. Chem. 7, 383–415.

    CAS  Google Scholar 

  48. Wolfe, N. L., Metwally, M. E.-S., and Moftah, A. E. (1989), in Reactions and Movement of Organic Chemicals in Soils Sawhney, B. L. and Brown, K., eds., vol. 9, SSSA Special Publication Number 22, Soil Society of America and American Society of Agronomy, Madison, WI, pp. 29–241.

    Google Scholar 

  49. Hurle, K. and Walker, A. (1980), in Interactions Between Herbicides and the Soil, Hance, R. J., ed., Academic, New York, pp. 83–122.

    Google Scholar 

  50. Alexander, M. and Scow, K. M. (1989), in Reactions and Movement of Organic Chemicals in Soils, Sawhney, B. L. and Brown, K., eds., vol. 10, SSSA Special Publication Number 22, Soil Society of America and American Society of Agronomy, Madison, WI, pp. 243–269.

    Google Scholar 

  51. Hance, R. J., and McKone, C. E. (1971), Pesticide Sci. 2, 31–34.

    Article  CAS  Google Scholar 

  52. Hamaker, J. W., Youngson, C. R., and Goring, C. A. I. (1968), Weed Res. 8, 46–57.

    Article  CAS  Google Scholar 

  53. Hamaker, J. W. (1972), in Organic Chemistru in the Soil Environment, Goring, C. A. I. and Hamaker, J. W., eds., Marcel Dekker, New York, pp. 253–340.

    Google Scholar 

  54. Aiba, S., Humphrey, A., and Millis, N. (1979), Biochemical Engineering, 2nd ed. Academic, New York.

    Google Scholar 

  55. Bailey, J. E., and Ollis, D. F. (1986), Biochemical Engineering Fundamentals, 2nd ed., McGraw-Hill, New York.

    Google Scholar 

  56. Wang, D. I. C., Cooney, C. L., Demain, A. L., Dunnill, P., Humphrey, A., and Lilly, M. D. (1979), Fermentation and Enzyme Technology, John Wiley & Sons, New York.

    Google Scholar 

  57. Focht, D. D. and Shelton, D. (1987), Appl. Environ. Microbiol. 53, 1846–1849.

    CAS  Google Scholar 

  58. Ishida, Y., Imai, I., Miyagaki, T., and Kadota, H. (1982), Microbiol. Ecol. 8, 23–32.

    Article  CAS  Google Scholar 

  59. Lewis, D. L., Kollig, H. P., and Hall, T. L. (1983), Appl. Environ. Microbiol. 46, 146–151.

    CAS  Google Scholar 

  60. Jones, S. H., and Alexander, M. (1986), Appl. Environ. Microbiol. 51, 891–897.

    CAS  Google Scholar 

  61. Simkins, S. and Alexander, M. (1984), Appl. Environ. Microbiol. 47, 1299–1306.

    CAS  Google Scholar 

  62. Kunc, F. and Rybarova, J. (1983), Soil Biol. Biochem. 15, 141–144.

    Article  CAS  Google Scholar 

  63. Lees, H. and Quastel, J. H. (1946), Biochem. J. 40, 803–828.

    CAS  Google Scholar 

  64. Klecka, G. M. and Maier, W. J. (1985), Appl. Environ. Microbiol. 49, 46–53.

    CAS  Google Scholar 

  65. Rozich, A. F., Gaudy, A. F., Jr., and D'Adamo, P. C. (1985), Water Res. 19, 481–490.

    Article  CAS  Google Scholar 

  66. Bouchard, D. C., Lavy, T. L., and Lawson, E. R. (1985), J. Environ. Quality 14, 229–233.

    Article  CAS  Google Scholar 

  67. Montgomery, M., Yu, T. C., and Freed, V. H. (1972), Weed Res. 12, 31–36.

    Article  CAS  Google Scholar 

  68. Walker, A. and Brown, P. A. (1983), Bull. Environ. Contam. Toxicol. 30, 365–372.

    Article  CAS  Google Scholar 

  69. Meikle, R. W., Youngson, C. R., Hedlund, R. T., Goring, C. A. I., Hamaker, J. W., and Addington, W. W. (1973), Weed Sci. 21, 549–555.

    CAS  Google Scholar 

  70. Scow, K. M., Simkins, S., and Alexander, M. (1986), Appl. Environ. Microbiol. 51, 1028–1035.

    CAS  Google Scholar 

  71. Gonçalves, A. R., Garratt, J. A., Silva, F. T., Ferraz, A., Cotrim, A. R., Ferreira, A., and Wilkins, R. M. (1999), J. Agric. Food Chem., submitted.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samuel C. Oliveira.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oliveira, S.C., Pereira, F.M., Ferraz, A. et al. Mathematical modeling of controlled-release systems of herbicides using lignins as matrices. Appl Biochem Biotechnol 84, 595–615 (2000). https://doi.org/10.1385/ABAB:84-86:1-9:595

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/ABAB:84-86:1-9:595

Index Entries

Navigation