Skip to main content
Log in

Ethanol production from glucose and xylose by immobilized Zymomonas mobilis CP4 (pZB5)

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Fermentation of glucose-xylose mixtures to ethanol was investigated in batch and continuous experiments using immobilized recombinant Zymomonas mobilis CP4(pZB5). This microorganism was immobilized by entrapment in κ-carrageenan beads having a diameter of 1.5–2.5 mm. Batch experiments showed that the immobilized cells cofermented glucose and xylose to ethanol and that the presence of glucose improved the xylose utilization rate. Batch fermentation of rice straw hydrolysate containing 76 g/L of glucose and 33.8 g/L of xylose gave an ethanol concentration of 44.3 g/L after 24 h, corresponding to a yield of 0.46 g of ethanol/g of sugars. Comparable results were achieved with a synthetic sugar control. Continuous fermentation experiments were performed in a laboratory-scale fluidized-bed bioreactor (FBR). Glucose-xylose feed mixtures were pumped through the FBR at residence times of 2–4 h. Glucose conversion to ethanol was maintained above 98% in all experiments. Xylose conversion to ethanol was highest at 91.5% for a feed containing 50 g/L of glucose and 13 g/L of xylose at a dilution rate of 0.24/h. The xylose conversion to ethanol decreased with increasing feed xylose concentration, dilution rate, and age of the immobilized cells. Volumetric ethanol productivities in the range of 6.5–15.3 g/L·h were obtained. The improved productivities achieved in the FBR compared to other bioreactor systems can help in reducing the production costs of fuel ethanol from lignocellulosic sugars.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ladisch, M. R., Lin, K. W., Voloch, M., and Tsao, G. T., (1983), Enzyme Microbiol. Technol., 5, 82–102.

    Article  CAS  Google Scholar 

  2. Burchhardt, G., and Ingram, L. O. (1992), Appl. Environ. Microbiol. 58, 1128–1133.

    CAS  Google Scholar 

  3. Ingram, L. O., Conway, T., Clark, D. P., Sewell, G. W., and Preston, J. F. (1987), Appl. Environ. Microbiol., 53, 2420–2425.

    CAS  Google Scholar 

  4. Ohta, K., Beall, D. S., Mejia, J. P., Shanmugam, K. T., and Ingram, L. O., (1991), Appl. Environ. Microbiol., 57, 893–900.

    CAS  Google Scholar 

  5. Doran, J. B., Aldrich, H. C., and Ingram, L. O., (1994), Biotechnol. Bioeng., 44, 240–247.

    Article  CAS  Google Scholar 

  6. Ohta, K., Beall, D. S., Mejia, J. P., Shanmugam, K. T., and Ingram L. O. (1991), Appl. Environ. Microbiol., 57, 2810–2815.

    CAS  Google Scholar 

  7. Zhang, M., Eddy, C., Deanda, K., Finke Istein, M., and Picataggio, S. (1995), Science 267, 240–243.

    Article  CAS  Google Scholar 

  8. Ho, N. W. Y., Chen, Z. D., and Brainard, A. (1998), Appl. Environ. Microbiol. 64(3) 1852–1859.

    CAS  Google Scholar 

  9. Davison, B. H. and Scott, C. D. (1988), Appl. Biochem. Biotechnol. 18, 19–34.

    Article  CAS  Google Scholar 

  10. Lawford, H. G., Rousseau, J. D., Mohagheghi, A., and McMillan, J. D. (1998), Appl. Biochem. Biotechnol. 70–72, 353–367.

    Google Scholar 

  11. Laplace, J. M., Delgenes, J. P., Moletta, R., and Navarro, J. M. (1993), Process Biochem. 28, 519–525.

    Article  CAS  Google Scholar 

  12. Chamy, R., Nunez, M. J., and Lema, J. M. (1994), Enzyme Microbiol. Technol. 16, 622–626.

    Article  CAS  Google Scholar 

  13. Nunez, M. J., Chamy, R., Dominguez, H., Sanroman, A., and Lema, J. M. (1991), Appl. Biochem. Biotech. 28–29, 731–739.

    Google Scholar 

  14. Sanroman, A., Chamy, M., Nunez, J., and Lema, J. M., (1994), Enzyme Microbiol. Technol. 16, 72–78.

    Article  CAS  Google Scholar 

  15. Krishnan, M. S., Nghiem, N. P., and Davison, B. H. (1999), Appl. Biochem. Biotechnol. 77–79, 359–372.

    Article  Google Scholar 

  16. Harshbarger, D., Bautz, M., Davison, B. H., Scott, T. C., and Scott, C. D. (1995), Appl. Biochem. Biotechnol. 51/52, 593–604.

    CAS  Google Scholar 

  17. Taylor, F., Krishnan, M. S., Nghiem, N. P., and Davison, B. H. (1999), Biores. Tech., submitted.

  18. Scott, C. D., Woodward, C. A., and Thomson, J. E. (1988), Enzyme Microbiol. Technol., 11, 258–263.

    Article  Google Scholar 

  19. Arkenol, Inc. (1996), US patent no. 5,562,777.

  20. Peterson, G. L. (1977), Anal. Biochem., 83, 246.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nhuan P. Nghiem.

Additional information

This article has been authored by a contractor of the US go vernment under contract DE-AC05-96OR22464. Accordingly, the US government retains a nonexclusive, royaltyfree license to publish or reproduce the published form of the contribution, or allow others to do so, for US government purposes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krishnan, M.S., Blanco, M., Shattuck, C.K. et al. Ethanol production from glucose and xylose by immobilized Zymomonas mobilis CP4 (pZB5). Appl Biochem Biotechnol 84, 525–541 (2000). https://doi.org/10.1385/ABAB:84-86:1-9:525

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/ABAB:84-86:1-9:525

Keywords

Navigation