Skip to main content
Log in

Fourier transform infrared quantification of sugars in pretreated biomass liquors

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The process of converting renewable lignocellulosic biomass to ethanol requires a number of steps, and pretreatment is one of the most important. Pretreatment usually in volves a hydrolysis of the easily hydrolyzed hemicellulosic component of biomass using some form of thermal/chemical/mechanical action that results in a product that can be further hydrolyzed by cellulase enzymes (the cellulosic portion). The sugars produced can then befermented to ethanol by fermentative microorganisms. If the pretreatment step is not severe enough, the resultant residue is not as easily hydrolyzed by the cellulase enzyme. More severe pretreatment conditions result in the production of degradation products that are toxic to the fermentative microorgan ism. In this article, wereport the quantitative analysis of glucose, mannose, xylose, and acetic acid using Fourier transform infrared (FTIR) spectroscopy on liquors from dilute-acid-pretreated softwood and hard wood slurries. Comparison of FTIR and high-performance liquid chromatography quantitative analyses of these liquorsare reported. Recent developments in infrared probe technology has enabled the rapid quantification of these sugars by FTIR spectroscopy in the batch reactor during optimization of the pretreatment conditions, or interfaced to the computer controlling a continuous reactor for on-line monitoring and control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nguyen, Q. A., Tucker, M. P., Keller, F. A., Beaty, D. A., Connors, K. M., and Eddy, F. P. (1999), Appl. Biochem. Biotechnol. 77–79, 133–142.

    Article  Google Scholar 

  2. Sjolander, N. O., Langlykke, A. F., and Peterson, W. H. (1938), Ind. Eng. Chem. 30(11), 1251–1255.

    Article  CAS  Google Scholar 

  3. Block, S. S. (1944), J. Bacteriol. 47, 213.

    Google Scholar 

  4. Griffiths, R. P. (1975), Chemical Infrared Fourier Transform Spectroscopy, John Wiley, New York.

    Google Scholar 

  5. Krishnan, K. and Ferraro, J. R. (1982), in Fourier Transform Infrared Spectroscopy, Krishnan, K. and Ferraro, J. R., eds., vol. 3, Academic, New York, p. 203.

    Google Scholar 

  6. Doyle, W. M. (1990), Appl Spectros. 44, 50.

    Article  CAS  Google Scholar 

  7. Harrick, N. J. (1967), Internal Reflection Spectroscopy, John Wiley, New York.

    Google Scholar 

  8. Kuehl, D. and Crocombe, R. (1984), Appl. Spectros. 38(6), 907–909.

    Article  CAS  Google Scholar 

  9. Faix, O. (1988), Mikrochim. Acta 1(6), 21–25.

    Article  Google Scholar 

  10. Milosevic, M., Sting, D., and Rein, A. (1995), Spectroscopy 10(4), 44–49.

    CAS  Google Scholar 

  11. Schultz, T. P., Templeton, M. C., and McGinnis, G. D. (1985), Anal. Chem. 57(14), 2867–2869.

    Article  CAS  Google Scholar 

  12. Grandmaison, J. L., Thibault, J., Kaliaguine, S., and Chantal, P. D. (1987), Anal. Chem. 59(17), 2153–2157.

    Article  CAS  Google Scholar 

  13. Faix, O. and Bottcher, J. H. (1992), Holz Als Roh-Und Werkstoff 40(6), 221–226.

    Article  Google Scholar 

  14. Pandey, K. K. (1999), J. Appl. Polymer Sci. 71, 1969–1975.

    Article  CAS  Google Scholar 

  15. Zavarin, E., Jones, S. J., and Cool, L. G. (1990), J. Wood Chem. Technol. 10(4), 495–513.

    Article  CAS  Google Scholar 

  16. Faix, O. and Bottcher, J. H. (1993), Holzforschung 47, 45–49.

    CAS  Google Scholar 

  17. Rodrigues, J., Faix, O., and Pereira, H. (1998), Holzforschung 52, 46–50.

    Article  CAS  Google Scholar 

  18. Duran, N. and Angelo, R. (1998), Appl. Spectros. Rev. 33(3), 219–236.

    Article  CAS  Google Scholar 

  19. Heitz, M., Rubio, M., Wu, G., and Khorami, J. (1995), Anales De Quimica 918, 685–689.

    Google Scholar 

  20. Schultz, T. P. and Glasser, W. G. (1986), Holzforschung 40, 37–44.

    Article  CAS  Google Scholar 

  21. Leonard, R. H. and Hajny, G. J. (1945), Ind. Eng. Chem. 37(4), 390–395.

    Article  CAS  Google Scholar 

  22. Partansky, A. (1940), U. S. Patent 2,203,360.

  23. Nguyen, Q. A., Dickow, J. H., Duff, B. W., Farmer, J. D., Glassner, D. A., Ibsen, K. N., Ruth, M. F., Schell, D. J., Thompson, I. B., and Tucker, M. P. (1997), Bioresour. Technol. 58, 189–196.

    Article  Google Scholar 

  24. Tucker, M. P., Farmer, J. D., Keller, F. A., Schell, D. J., and Nguyen, Q. A. (1998), Appl. Biochem. Biotechnol. 70–72, 25–35.

    Article  Google Scholar 

  25. Nguyen, Q. A., Keller, F. A., Tucker, M. P., Lombard, C. K., Jenkins, B. M., Yomogida, D., and Tiangco, V. M. (1999), Appl. Biochem. Biotechnol. 77–79, 455–472.

    Article  Google Scholar 

  26. Krull, I. and Swartz, M. (1997), LC:GC 15(6), 534–538.

    CAS  Google Scholar 

  27. Bouchard, J., Abatzoglou, N., Chornet, E., and Overend, R. P. (1989), Wood Sci. Technol. 23, 343–355.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Melvin P. Tucker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tucker, M.P., Mitri, R.K., Eddy, F.P. et al. Fourier transform infrared quantification of sugars in pretreated biomass liquors. Appl Biochem Biotechnol 84, 39–50 (2000). https://doi.org/10.1385/ABAB:84-86:1-9:39

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/ABAB:84-86:1-9:39

Index Entries

Navigation