Skip to main content
Log in

Enhanced alkaline protease production in addition to α-amylase via constructing a Bacillus subtilis strain

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Bacillus subtilis Bios 11 strain was previously isolated and identified. This strain naturally produces a high level of α-amylase. The multicopy (pS1) plasmid that carries the complete alkaline protease aprA gene was introduced to this host strain by transformation. The newly constructed strain was found to express the aprA gene and produces a high level of alkaline protease. The level of α-amylase production was not affected compared with the parent strain. The pS1 plasmid in the new host was proved to be segregationally and structurally stable, and the multicopy aprA gene was expressed at the stationary phase. This expression did not affect growth rate and sporulation frequency. Moreover, the level of α-amylase was maintained. Both alkaline protease and α-amylase enzymes were purified using a single-step affinity chromatography column. The use of the newly constructed strain would be valuable to the enzyme industry and would promote recycling of some food-processing wastes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Doi, R. H. (1984), Biotechnology and Genetic Engineering Reviews, vol. 2, Intercept Limited, England.

    Google Scholar 

  2. Zaghloul, T. I., Abdelaziz, A., and Mostafa, M. H. (1994), Enzyme Microb. Technol. 16, 534–537.

    Article  CAS  Google Scholar 

  3. Shoham, Y. and Demain, A. L. (1990), Enzyme Microb. Technol. 12, 330–336.

    Article  CAS  Google Scholar 

  4. Vehmaanpera, J. O. and Korhola, M. P. (1986), Appl. Microb. Biotechnol. 23, 456–461.

    Article  CAS  Google Scholar 

  5. Meima, R., Haijema, B. J., Dijkstra, H., Haan, G. J., Venema, G., and Bron, S. (1997), J. Bacteriol. 179, 1219–1229.

    CAS  Google Scholar 

  6. Zaghloul, T. I., Abdel Wahab, A. E., and Mostafa, M. H. (1993), Alexandria J. Pharm. Sci. 7, 133–136.

    CAS  Google Scholar 

  7. Bernhard, K., Schrempf, H., and Goebel, W. (1978), J. Bacteriol. 133, 897–903.

    CAS  Google Scholar 

  8. Leighton, T. J. and Doi, R. H. (1971), J. Biol. Chem. 246, 3189–3195.

    CAS  Google Scholar 

  9. Zaghloul, T. I., Kawamura, F., and Doi, R. H. (1985), J. Bacteriol., 164, 550–555.

    CAS  Google Scholar 

  10. Sutar, I. I., Vartak, H. G., Srinivasan, M. C., and Siva Raman, H. (1986), Enzyme Microb. Technol. 8, 632–634.

    Article  CAS  Google Scholar 

  11. Manning, G. and Campbell, L. (1961), J. Biol. Chem. 236, 2952–2957.

    CAS  Google Scholar 

  12. Zaghloul, T. I. (1986), PhD thesis, University of California, Davis.

  13. Chandrasekaran, S. and Dhar, S. C. (1985), Anal. Biochem. 150, 141–144.

    Article  CAS  Google Scholar 

  14. Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. (1951), J. Biol. Chem. 193, 265–275.

    CAS  Google Scholar 

  15. Kobayashi, M., Kurusu, Y., and Yukawa, H. (1991), Appl. Biochem. Biotechnol. 27, 145–162.

    Article  CAS  Google Scholar 

  16. Imanaka, T. (1987), Ann. NY Acad. Sci. 507, 371–383.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taha I. Zaghloul.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zaghloul, T.I., Abdel Wahab, A.E. & Mostafa, M.H. Enhanced alkaline protease production in addition to α-amylase via constructing a Bacillus subtilis strain. Appl Biochem Biotechnol 84, 319–327 (2000). https://doi.org/10.1385/ABAB:84-86:1-9:319

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/ABAB:84-86:1-9:319

Index Entries

Navigation