Skip to main content
Log in

Anaerobic toxicity and biodegradability of hydrolysis products of chemical warfare agents

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The toxicity and biodegradability of the main hydrolysis products of chemical warfare agents were investigated under methanogenic conditions. Among the tested substances, only MPhA does not have any toxic effect with regard to the aceticlastic methanogenic activity. The toxicity of other compounds varied between moderate (TDG, mercaptoethanol) to strong (ethanolamine, diisobutyl ester of MPhA). Biodegradability tests showed that all the products of chemical detoxification of mustard gas (ethanolamine, ethylene glycol, TDG, mercaptoethanol) can be biomineralized under methanogenic conditions. On the contrary, phosphorus-containing compounds from the chemical detoxification of nerve warfare agents (Sarin, Soman, Vx-gases) are quite persistent under these conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Smith, K. J., Hurst, C. G., Moeller, R. B., Skelton, H. G., and Sidell, F. R. (1995), J. Am. Acad. Dermatol. 32(5), 765–776.

    Article  CAS  Google Scholar 

  2. Saunders, B. C. (1957), Some Aspects of the Chemistry and Toxic Action of Organic Compounds Containing Phosphorous and Fluorine, Cambridge University Press, New York.

    Google Scholar 

  3. Harvey, S., Defrank, J. J., Kamely, D., Valdes, J. J., Chakrabarty, A. M., Kamley, D., and Kornguth, S. E. (1991), Proceedings of US-Israel Research Conference on Advances in Applied Biotechnology, Kamley, D. and Chakrabarty, A. M., eds., June 24–30 1990, Haifa, Israel.

  4. Varfolomeev, S. D., Kurochkin, I. N., Rainina, E. I., Kholstov, V. I., Zavyalova, N. V., and Wild, J. R. (1995), Rossiiskyi Khimicheskii Zhurnal 39(4), 20–24.

    CAS  Google Scholar 

  5. Boronin, A. N., Sakharovskii, V. G., Starovoitov, I. I., Zyakun, A. M., Shvetsov, V. N., Morozova, K. M., Nechaev, I. A., Tugushov, V. I., Kuz’min, N. P., and Kochergin, A. I. (1996), Prikladnaya Biokhimiya Mikrobiologiya 32(1), 61–68.

    CAS  Google Scholar 

  6. Sines, B. J., Teather, E. W., Harvey, S. P., and Weigand, W. A. (1994), Appl. Biochem. Biotechnol. 45/46, 881–895.

    Google Scholar 

  7. Pham, M. Q. K., Harvey, S. P., Weigand, W. A., and Bentley, W. E. (1996), Appl. Biochem. Biotechnol. 57/58, 779–789.

    Article  CAS  Google Scholar 

  8. Dumora, C., Lacoste, A., and Cassaigne, A. (1983), Eur. J. Biochem. 133, 119–125.

    Article  CAS  Google Scholar 

  9. Lee, K. S., Metcalf, W. W., and Wanner, B. L. (1992), J. Bacteriol. 174, 2501–2510.

    CAS  Google Scholar 

  10. Wanner, B. L. (1994), Biodegradation 5, 175–184.

    Article  CAS  Google Scholar 

  11. Kertesz, M. A., Elgorriaga, A., and Amrhein, N. (1991), Biodegradation 2, 53–59.

    Article  CAS  Google Scholar 

  12. Hidaka, T., Hidaka, M., Uozumi, T., and Seto, H. (1992), Mol. Gen. Genetics 233, 476–478.

    Article  CAS  Google Scholar 

  13. Dumora, C., Lacoste, A., and Cassaigne, A. (1989), Biochim. Biophys. Acta 997, 193–198.

    CAS  Google Scholar 

  14. Wackett, L. P., Wanner, B. L., Venditti, C. P., and Walsh, C. T. (1987), J. Bacteriol. 169, 1753–1756.

    CAS  Google Scholar 

  15. McMullan, G. and Quinn, J. P. (1994), J. Bacteriol. 176, 320–324.

    CAS  Google Scholar 

  16. Kalyuzhnyi, S., Fedorovich, V., and Nozhevnikova, A. (1998), Bioresour. Technol. 65, 221–225.

    Article  CAS  Google Scholar 

  17. American Public Health Association. (1985), Standard Methods for the Examination of Water and Wastewater, 16th ed., American Public Health Association, Washington, DC.

    Google Scholar 

  18. Rabinovich, V. L. and Havin, Z. Ya. (1977), Short Chemical Handbook, Khimiya Press, Moscow.

    Google Scholar 

  19. Beilstein’s Handbuch der Organischen Chemie (Fourth supplement), vol. 1, p. 2428.

  20. Beilstein’s Handbuch der Organischen Chemie (Fourth supplement), vol. 4, pp. 3498 and 3502.

  21. Henry, M. P., B. A. Donlon, P. N. Lens, and E. E. Colleran, (1996), J. Chem. Technol. Biotechnol. 66(3), 251–264.

    Article  CAS  Google Scholar 

  22. Stewart, J. M., Bhattacharya, S. K., Madura, R. L., Mason, S. H., and Schonberg, J. C. (1995), Water Res. 12, 2730–2738.

    Article  Google Scholar 

  23. Donlon, B. A., Razo-Flores, E., Field, J. A., and Lettinga, G. (1995), Appl. Environ. Microbiol. 61(11), 3889–3893.

    CAS  Google Scholar 

  24. Razo-Flores, E. (1997), PhD thesis, Wageningen Agriculture University, Netherlands.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergey V. Kalyuzhnyi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sklyar, V.I., Mosolova, T.P., Kucherenko, I.A. et al. Anaerobic toxicity and biodegradability of hydrolysis products of chemical warfare agents. Appl Biochem Biotechnol 81, 107–117 (1999). https://doi.org/10.1385/ABAB:81:2:107

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/ABAB:81:2:107

Index Entries

Navigation