Applied Biochemistry and Biotechnology

, Volume 80, Issue 3, pp 221–230 | Cite as

Oxidation of polycyclic aromatic hydrocarbons catalyzed by soybean peroxidase

  • Jennifer J. Kraus
  • Inmar Z. Munir
  • James P. McEldoon
  • Douglas S. Clark
  • Jonathan S. Dordick
Article

Abstract

Soybean peroxidase (SBP) catalyzes the oxidation of a variety of polycyclic aromatic hydrocarbons (PAHs) in the presence of water-miscible organic cosolvents, including acetonitrile, tetrahydrofuran, and dimethylformamide (DMF). Oxidation was optimal at pH 2.0–2.5, with substantially lower reactivity at pH 1.5 as well as at pH > 3.0. Despite the low pH activity optimum, SBP had an observed half-life of 120 h at pH 2.5. Conversions of greater than 90% were observed with anthracene and 9-methylanthracene in the presence of 50% (v/v) DMF. Anthracene oxidation yielded exclusively anthraquinone, thereby demonstrating that SBP catalyzes a formal six-electron oxidation of the unactivated aromatic substrate to the quinone. A mechanism is proposed to account for this reaction that includes the initial one-electron oxidation of the PAH followed by addition of water to the oxidized PAH. 9-Methylanthracene was more reactive than anthracene, and its enzymatic oxidation yielded two products: anthraquinone and 9-methanol-9,10-dihydroanthracene. The former product indicates that loss of the methyl group occurs during enzymatic oxidation. These results suggest that SBP could be useful in the conversion of PAHs into more environmentally benign materials.

Index Entries

Peroxidase oxidation of polycyclic aromatic hydrocarbons water-miscible organic cosolvents anthracene 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Neff, J. M. (1979), Polycyclic Aromatic Hydrocarbons and the Aquatic Environment, Applied Science, London.Google Scholar
  2. 2.
    Lee, M. L., Novotny, M. V., and Bartle, K. D. (1981), Analytical Chemistry of Polycyclic Aromatic Hydrocarbons, Academic, New York.Google Scholar
  3. 3.
    Polynuclear Aromatic Compounds, Part 1. Chemical, Environmental and Experimental Data. (1983), IARC Mongr. Eval. Carcinog. Risk Chem. Humans 32.Google Scholar
  4. 4.
    Navratil, J. D., Sievers, R. E., and Walton, H. F. (1977), Anal. Chem. 49(14), 2260–2263.CrossRefGoogle Scholar
  5. 5.
    Diesel and Gasoline Exhausts and Some Nitroarenes. (1983), IARC Mongr. Eval. Carcinog. Risk Chem. Humans 32.Google Scholar
  6. 6.
    Nesnow, S., Davis, C., Nelson, G., Ross, J. A., Allison, J., Adams, L., and King, L. C. (1997), Carcinogenesis 18, 1973–1978.CrossRefGoogle Scholar
  7. 7.
    Seidel, A., Luch, A., Platt, K. L., Oesch, F., and Glatt, H. (1994), Polycycl. Aromat. Hydrocarb. 6, 191–198.Google Scholar
  8. 8.
    Amin, S., Desai, D., Dai, W., Harvey, R. G., and Hecht, S. S. (1995), Carcinogenesis 16, 2813–2817.CrossRefGoogle Scholar
  9. 9.
    Haemmerli, S. D., Leisola, M. S. A., Sanglard, D., and Feichter, A. (1986), J. Biol. Chem. 261, 6900–6903.Google Scholar
  10. 10.
    Vazquez-Duhalt, R., Westlake, D. W. S., and Fedorak, P. M. (1994), Appl. Environ. Microbiol. 60, 459–466.Google Scholar
  11. 11.
    McEldoon, J. P., Pokora, A. R., and Dordick, J. S. (1995), Appl. Environ. Microbiol. 17, 359–365.Google Scholar
  12. 12.
    McEldoon, J. P. and Dordick, J. S. (1996), Biotechnol. Prog. 12, 555–558.CrossRefGoogle Scholar
  13. 13.
    Kersten, P. J., Kalyanaraman, B., Hammel, K. E., Reinheammar, B., and Kirk, T. K. (1990), Biochem. J. 268, 475–480.Google Scholar
  14. 14.
    Dordick, J. S., Marletta, M. A., and Klibanov, A. M. (1987), Biotechnol. Bioeng. 30, 31–36.CrossRefGoogle Scholar
  15. 15.
    Berglund, S. and Cvetkovic, V. (1995), Ground Water 33, 675–685.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 1999

Authors and Affiliations

  • Jennifer J. Kraus
    • 1
  • Inmar Z. Munir
    • 1
  • James P. McEldoon
    • 1
  • Douglas S. Clark
    • 2
  • Jonathan S. Dordick
    • 1
  1. 1.Department of Chemical and Biochemical EngineeringUniversity of IowaIowa City
  2. 2.Department of Chemical EngineeringUniversity of CaliforniaBerkeley
  3. 3.Merck & Co., Inc.Elkton
  4. 4.Department of Chemical EngineeringRensselaer Polytechnic InstituteTroy

Personalised recommendations