Applied Biochemistry and Biotechnology

, Volume 77, Issue 1–3, pp 117–125 | Cite as

Steam explosion of straw in batch and continuous systems

  • Francesco ZimbardiEmail author
  • Donato Viggiano
  • Francesco Nanna
  • Mario Demichele
  • Daniela Cuna
  • Giovanni Cardinale


The effects of the steam-explosion treatment on aqueous fractionation and bioconversion of wheat straw have been investigated. The treatments have been carried out in batch and continuous reactors with capacity of 0.5 Kg/cycle and 150 Kg/h, respectively. The exploded materials have been sequentially extracted with water at 65°C and sodium hydroxide 1.5%. Analytical determinations of liquid fractions and solid residues haveled to the fractionation pattern of the carbohydrates as, monomers, oligomers, and polymers. Evaluations of total acidity, ash content, and lignin recovery have improved understanding of the process. This part of the work has allowed us to derive: the empiric relationship between the batch and the continuous reactors and the yield and availability of pentoses and hexoses in various phases. Selected samples have been tested in enzymatic-hydrolysis experiments, pointing out the effect of treatment severity and reactor used on the saccharification yield.

Index Etries

Enzymatic hydrolysis steam explosion straw 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chornet, E. and Overend, R. (1988), in Steam Explosion Techniques, Focher, B., Marzetti, A., and Crescenzi, V., eds. Gordon & Breach, Amsterdam, pp. 21–58.Google Scholar
  2. 2.
    Brownell, H. H., Yu, E. K. C., and Saddler, J. N. (1986), Biotechnol. Bioeng. 28, 792–801.CrossRefGoogle Scholar
  3. 3.
    Bouchard, J., Leger, S., and Chornet, E. (1986), Biomass, 9, 161–171.CrossRefGoogle Scholar
  4. 4.
    Abatzoglou, N., Chornet, E., and BelKacemi, K. (1992), Chem. Eng. Sci. 47, 1109–1122.CrossRefGoogle Scholar
  5. 5.
    Nazhad, M. M., Ramos, L. P., Paszner, L., and Saddler, J. N. (1995), Enzyme Microbiol. Technol. 17, 68–74.CrossRefGoogle Scholar
  6. 6.
    Sineiro, J., Dominguez, H., Nunez, M. J., and Lema, J. M. (1995), Enzyme Microbiol. Technol. 35, 23–32.Google Scholar
  7. 8.
    Viggiano, D., Cardinale, G., Felici, F., Nanna, F., and Zimbardi, F. (1994), Proceedings of the 8th European Conference on Biomass for Energy, Environment, Agriculture and Industry. Grassi, G., ed., Elsevier, pp. 1385–1392.Google Scholar
  8. 9.
    Vlasenko, E. Yu., Ding, H., Labavitch, J. M., and Shoemaker, S. P. (1997), Biores. Technol. 59, 109–119.CrossRefGoogle Scholar
  9. 10.
    Von Sivers, M., and Zacchi, G. (1995), Biores. Technol. 51, 43–52.CrossRefGoogle Scholar
  10. 11.
    Lynd, L. R., Cushman, J. H., Nichols, R. J., and Wyman, C. E. (1991), Science 251, 1318–1323.CrossRefGoogle Scholar
  11. 12.
    Bashir, S., and Lee, S. (1994), Fuel Sci. Technol. 12, 1427–1473.Google Scholar
  12. 13.
    Carrasco, F., Chornet, E., Overend, R.P., and Heitz, M. (1986), Can. J. Chem. Eng. 64, 986–993.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 1999

Authors and Affiliations

  • Francesco Zimbardi
    • 1
    Email author
  • Donato Viggiano
    • 1
  • Francesco Nanna
    • 1
  • Mario Demichele
    • 1
  • Daniela Cuna
    • 1
  • Giovanni Cardinale
    • 1
  1. 1.ENEA, Italian Agency for New Technology Energy and the Environment, Renewable Energy DivisionPolicoroBiomass LaboratoryItaly

Personalised recommendations