Electrolyzed-reduced water protects against oxidative damage to DNA, RNA, and protein


The generation of reactive oxygen species is thought to cause extensive oxidative damage to various biomolecules such as DNA, RNA, and protein. In this study, the preventive, suppressive, and protective effects of in vitro supplementation with electrolyzed-reduced water on H2O2-induced DNA damage in human lymphocytes were examined using a comet assay. Pretreatment, cotreatment, and posttreatment with electrolyzed-reduced water enhanced human lymphocyte resistance to the DNA strand breaks induced by H2O2 in vitro. Moreover, electrolyzed-reduced water was much more effective than diethylpyrocarbonate-treated water in preventing total RNA degradation at 4 and 25°C. In addition, electrolyzed-reduced water completely prevented the oxidative cleavage of horseradish peroxidase, as determined using sodium dodecyl sulfate-polyacrylamide gels. Enhancement of the antioxidant activity of ascorbic acid dissolved in electrolyzed-reduced water was about threefold that of ascorbic acid dissolved in nonelectrolyzed deionized water, as measured by a xanthine-xanthine oxidase superoxide scavenging assay system, suggesting an inhibitory effect of electrolyzed-reduced water on the oxidation of ascorbic acid.

This is a preview of subscription content, log in to check access.


  1. 1.

    Ryoo, K. K., Kang, B. D., and Sumita, O. (2002), J. Mater. Res. 17, 1298–1304.

    CAS  Article  Google Scholar 

  2. 2.

    Park, C. M., Hung, Y. C., Lin, C. S., and Brackett, R. E. (2005), J. Food Prot. 68, 986–990

    Article  Google Scholar 

  3. 3.

    Bialka, K. L., Demirci, A., Knabel, S. J., Patterson, P. H., and Puri, V. M. (2004), Poult. Sci. 83, 2071–2078.

    CAS  Article  Google Scholar 

  4. 4.

    Koseki, S., Isobe, S., and Itoh, K. (2004), J. Food Prot. 67, 2544–2549.

    Article  Google Scholar 

  5. 5.

    Ichihara, T., Fujii, G., Eda, T., Sasaki, M., and Ueda, Y. (2004), Kyobu Geka 57, 1110–1112.

    Google Scholar 

  6. 6.

    Koseki, S., Yoshida, K., Isobe, S., and Itoh, K. (2004), J. Food Prot. 67, 1247–1251.

    CAS  Article  Google Scholar 

  7. 7.

    Koseki, S., Yoshida, K., Kamitani, Y., and Itoh, K. (2003), J. Food Prot. 66, 2010–2016.

    Article  Google Scholar 

  8. 8.

    Fabrizio, K. A., Sharma, R. R., Demirci, A., and Cutter, C. N. (2002), Poult. Sci. 81, 1598–1605.

    CAS  Article  Google Scholar 

  9. 9.

    Park, H., Hung, Y. C., and Brackett, R. E. (2002), Int. J. Food Microbiol. 30, 77–83.

    Article  Google Scholar 

  10. 10.

    Lee, J. H., Rhee, P. L., Kim, J. H., et al. (2004), J. Gastroenterol. Hepatol. 19, 897–903.

    CAS  Article  Google Scholar 

  11. 11.

    Kohno, S., Kawata, T., Kaku, M., et al. (2004), Jpn. J. Infect. Dis. 57, 52–54.

    Google Scholar 

  12. 12.

    Mori, Y., Komatsu, S., and Hata, Y. (1997), Odontology 84, 619–626.

    CAS  Google Scholar 

  13. 13.

    Shirahata, S., Kabayama, S., Nakano, M., et al. (1997), Biochem. Biophys. Res. Commun. 234, 269–274.

    CAS  Article  Google Scholar 

  14. 14.

    Nishimura, L. Y., Teruya, T., Maki, K., et al. (2002), Cytotechnology 40, 139–149.

    Article  Google Scholar 

  15. 15.

    Ryoo, K. K., Lee, Y. B., Lee, J. K., and Lee, M. Y. (2005), J. Korean Acad. Ind. Soc. 6, 87–93.

    Google Scholar 

  16. 16.

    Park, E. J., Ryoo, K. K., Lee, Y. B., Lee, J. K., and Lee, M. Y. (2005), J Korean Soc. Appl. Biol. Chem. 48, 155–160.

    CAS  Google Scholar 

  17. 17.

    Singh, P. N., McCoy, M. T., Tice, R. R., and Schneider, E. L. (1988), Exp. Cell Res. 175, 184–191.

    CAS  Article  Google Scholar 

  18. 18.

    Laemmli, U. K. (1970), Nature 227, 680–685.

    CAS  Article  Google Scholar 

  19. 19.

    Nishikimi, M., Appaji, N., and Yagi, K. (1972), Biochem. Biophys. Res. Commun. 46, 849–854.

    CAS  Article  Google Scholar 

  20. 20.

    Horváthová, E., Slamenová, D., Hlincíková, L., Mandal, T. K., Gábelová, A., and Collins, A. R. (1998), Mutat. Res. 409, 163–171.

    Article  Google Scholar 

  21. 21.

    Cotelle, S. and Férard, J. F. (1999), Environ. Mol. Mutagen. 34, 246–255.

    CAS  Article  Google Scholar 

  22. 22.

    Wu, L. T., Chu, C. C., Chung, J. G., et al. (2004), Mutat. Res. 556, 75–82.

    CAS  Article  Google Scholar 

  23. 23.

    Machado, M. P., Filho, E. R., Terezan, A. P., Ribeiro, L. R., and Mantovani, M. S., (2005), Toxicol. In Vitro 19, 533–539.

    CAS  Article  Google Scholar 

  24. 24.

    Azqueta, A., Pachón, G., Cascante, M., Creppy, E., and López de Cerain, A. (2005), Mutagenesis 20, 165–171.

    CAS  Article  Google Scholar 

  25. 25.

    Park, Y. K., Park, E. J., Kim, J. S., and Kang, M. H. (2003), Mutat. Res. 529, 77–86.

    CAS  Article  Google Scholar 

  26. 26.

    Yen, G. C., Hung, Y. L., and Hsieh, C. L. (2000), Food Chem. Toxicol. 38, 747–754.

    CAS  Article  Google Scholar 

  27. 27.

    Chakraborty, S., Roy, M., and Bhattacharya, R. K. (2004), J. Environ. Pathol. Toxicol. Oncol. 23, 215–226.

    CAS  Article  Google Scholar 

  28. 28.

    Sambrook, J., Fritsch, E. F., and Maniatis, T. (1989), Molecular Cloning, pp. 7.3–7.5. (Ford, N., Nolan, C., and Ferguson, M., eds.). Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

    Google Scholar 

  29. 29.

    Kim, K., Rhee, S. G., and Stadtman, E. R. (1985), J. Biol. Chem. 260, 15,394–15,397.

    CAS  Google Scholar 

  30. 30.

    Lee, M. Y. and Kim, S. S. (1998), Phytochemistry 49, 23–27.

    Article  Google Scholar 

  31. 31.

    Podmore, I. D., Griffiths, H. R., Herbert, K. E., Mistry, N., Mistry, P., and Lunec, J. (1998), Nature 392, 559.

    CAS  Article  Google Scholar 

  32. 32.

    Lee, S. H., Oe, T., and Blair, I. A. (2001), Science 1292, 2083–2086.

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Mi Young Lee.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lee, M.Y., Kim, Y.K., Ryoo, K.K. et al. Electrolyzed-reduced water protects against oxidative damage to DNA, RNA, and protein. Appl Biochem Biotechnol 135, 133–144 (2006). https://doi.org/10.1385/ABAB:135:2:133

Download citation

Index Entries

  • Electrolyzed-reduced water
  • oxidative damage
  • DNA
  • RNA
  • protein