Skip to main content
Log in

Lactic acid bacteria production from whey

  • Original Research Articles
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The main purpose of this work was to isolate and characterize lactic acid bacteria (LAB) strains to be used for biomass production using a whey-based medium supplemented with an ammonium salt and with very low levels of yeast extract (0.25 g/L). Five strains of LAB were isolated from naturally soured milk after enrichment in whey-based medium. One bacterial isolate, designated MNM2, exhibited a remarkable capability to utilize whey lactose and give a high biomass yield on lactose. This strain was identified as Lactobacillus casei by its 16S rDNA sequence. A kinetic study of cell growth, lactose consumption, and titratable acidity production of this bacterial strain was performed in a bioreactor. The biomass yield on lactose, the percentage of lactose consumption, and the maximum increase in cell mass obtained in the bioreactor were 0.165 g of biomass/g of lactose, 100%, and 2.0 g/L, respectively, which were 1.44,1.11, and 2.35 times higher than those found in flask cultures. The results suggest that it is possible to produce LAB biomass from a whey-based medium supplemented with minimal amounts of yeast extract.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jelen, P. (1992), in Encyclopaedia of Food Science and Technology, vol. 4, Hui, Y. H., ed., John Wiley & Sons, New York, pp. 2835–2845.

    Google Scholar 

  2. Zhou, Q. H. and Kosaric, N. (1993), Biotechnol. Lett. 15, 477–482.

    Article  CAS  Google Scholar 

  3. Fitzpatrick, J. J., Ahrens, M., and Smith, S. (2001), Process Biochem. 36, 671–675.

    Article  CAS  Google Scholar 

  4. Ghaly, A. E., Tango, M. S. A., and Adams, M. A. (2003), Agric. Eng. Int.: CIGR J. Sci. Res. Dev. V, 1–20.

    Google Scholar 

  5. Carr, F. J., Chill, D., and Maida, N. (2002), CRC Crit. Rev. Microbiol. 28, 281–370.

    Article  CAS  Google Scholar 

  6. Amrane, A. and Prigent, Y. (1993), Biotechnol. Lett. 15, 239–244.

    Article  CAS  Google Scholar 

  7. Gaudreau, H., Renard, N., Champagne, C. P., and Van Horn, D. (2002), Can. J. Microbiol. 48, 626–634.

    Article  CAS  Google Scholar 

  8. Aeschlimann, A. and von Stockar, U. (1990), Appl. Microbiol. Biotechnol. 32, 398–402.

    Article  CAS  Google Scholar 

  9. Lund, B., Norddahl, B. and Ahring, B. (1992), Biotechnol. Lett. 14, 851–856.

    Article  CAS  Google Scholar 

  10. Mulligan, C.N., and Gibbs, B.F. (1991), Biotechnol. Appl. Biochem. 14, 41–53.

    CAS  Google Scholar 

  11. Stanbury, P.F. and Whitaker, A. (1987), in Principles of Fermentation Technology, Pergamon, Oxford, England, pp. 26–73.

    Google Scholar 

  12. Lowry, O.H., Rosenbrough, N.J., Farr, A.L., and Randall, R.J. (1951), J. Biol. Chem. 193, 265–275.

    CAS  Google Scholar 

  13. Relman, A.D. (1993), in Diagnostic Molecular Microbiology. (Persing, D.H., Smith, T.F., Tehover, F.C., and White, T.J., eds.) American Society for Microbiology, Washington, DC, pp. 489–495.

    Google Scholar 

  14. Cristiani-Urbina, E., Netzahuatl-Muñoz, A.R., Manriquez-Rojas, F.J., Juárez-Ramírez, C., Ruiz-Ordaz, N., and Galíndez-Mayer, J. (2000), Process Biochem. 35, 649–657.

    Article  CAS  Google Scholar 

  15. Helrich, K. (1990), Official Methods of Analysis, vol. 2, Association of Official Analytical Chemists, Arlington, VA.

    Google Scholar 

  16. Wang, D.I.C., Cooney, C.L., Demain, A.L., Dunnill, P., Humphrey, A.E., and Lilly, M.D. (1979), in Fermentation and Enzyme Technology, John Wiley & Sons, New York, pp. 57–97.

    Google Scholar 

  17. Nemcova, R. (1997), Vet. Med. 42, 19–27.

    CAS  Google Scholar 

  18. Ahmed, F.E. (2003), Trends Biotechnol. 21, 491–497.

    Article  CAS  Google Scholar 

  19. Roberfroid, M.D. (2000), Am. J. Clin. Nutr. 71, 1682S-1687S.

    CAS  Google Scholar 

  20. Farnworth, E.R. (2001), in Handbook of Nutraceuticals and Functional Foods, Wildman R.E.C., Ed., CRC Press, Boca Raton, FL, pp. 407–422.

    Google Scholar 

  21. Matsuzaki, T. and Chin, J. (2000), Immunol. Cell Biol. 78, 67–73.

    Article  CAS  Google Scholar 

  22. Saarela, M., Mogensen, G., Fondén, R., Mättö, J., and Mattila-Sandholm, T. (2000), J. Biotechnol. 84, 197–215.

    Article  CAS  Google Scholar 

  23. Olmos-Dichara, A., Ampe, F., Uribelarrea, J.L., Pareilleux, A., and Goma, G. (1997), Biotechnol. Lett. 19, 709–714.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eliseo Cristiani-Urbina.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mondragón-Parada, M.E., Nájera-Martínez, M., Juárez-Ramírez, C. et al. Lactic acid bacteria production from whey. Appl Biochem Biotechnol 134, 223–232 (2006). https://doi.org/10.1385/ABAB:134:3:223

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/ABAB:134:3:223

Index Entries

Navigation