Skip to main content
Log in

Biosorption of radioactive thorium by Sargassum filipendula

  • Original Research Articles
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

In the present work, the biosorption of radioactive thorium was investigated using a dry biomass of Sargassum filipendula as the biosorbent material. Radioactive solutions containing between 2.0 and 500.0μg thorium were tested by biosorption with S. filipendula, yielding uptake capacities from 20 to 100%, depending on the concentration of the solution. Kinetic studies indicated that equilibrium between the thorium solution and the solid fraction was achieved after three hours of contact and that a second-order model could express the equilibrium kinetics. In order to investigate the maximum biosorption capacity of the biomass an isotherm was done, based on the experimental data, which revealed the maximum uptake capacity to be 2.59 μmol thorium/g biomass. The experimental data fitted well to a Langmuir model, which provided a good correlation between the experimental and predicted thorium uptake values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cruz, C. C. V., Da Costa, A. C. A., Henriques, C. A., and Luna, A. S. (2004), Biores. Technol. 91, 249–257.

    Article  CAS  Google Scholar 

  2. Cossich, E. S., Tavares, C. R. G., and Ravagnani, T. M. (2002), Electron. J. Biotechnol. 5(2), 6–7.

    Google Scholar 

  3. Aksu, Z. (2001), Sep. Purif. Technol. 21, 285–294.

    Article  CAS  Google Scholar 

  4. Aslani, M. A. A., Akyil, S., and Eral, M. (2001), J. Radioanal. Nucl. Chem. 250, 153–157.

    Article  CAS  Google Scholar 

  5. Volesky, B. and Yang, J. (1999), Biosorption and elution of uranium with seaweed biomass. Proceedings of International Biohydrometallurgy Symposium 99, Spain.

  6. Chojnacka, K., Chojnacki, A., and Górecka, H. (2005), Chemosphere 59, 75–84.

    Article  CAS  Google Scholar 

  7. Diniz, V. and Volesky, B. (2005), Wat. Res. 39, 239–247.

    Article  CAS  Google Scholar 

  8. Psareva, T. S., Zakutevskyy, O. I., Chubar N. I., et al. (2005), Coll. Surf. A: Physicochem. Eng. Aspects 252, 231–236.

    Article  CAS  Google Scholar 

  9. Nakajima, A. and Tsuruta, T. (2004), J. Radioanal. Nucl. Chem. 260, 13–18.

    Article  CAS  Google Scholar 

  10. Andres, Y., Maccordick, H. J., and Hubert, J. C. (1993), Appl. Microbiol. Biotechnol. 39, 413.

    Article  CAS  Google Scholar 

  11. Fourest, E. and Volesky, B. (1996), Environ. Sci. Technol. 30, 277–282.

    Article  CAS  Google Scholar 

  12. Sar, P., Kazy, S. K., and D'Souza, S. F., (2004), Interntnl. Biodeter. Biodegr. 54, 193–202.

    Article  CAS  Google Scholar 

  13. Valdman, E. and Leite, S. G. F. (2004), Biopr. Engng. 22, 171–173.

    Google Scholar 

  14. Hashim, M. A. and Chu, K. H. (2004), Chem. Engng. J. 97, 249–255.

    Article  CAS  Google Scholar 

  15. Ting, Y.-P., Sheng, P. X., Chen, J. P., and Hong, L. (2004), J. Coll. Interf. Sci. 275, 131–141.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Carlos Augusto da Costa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Picardo, M.C., de Melo Ferreira, A.C. & da Costa, A.C.A. Biosorption of radioactive thorium by Sargassum filipendula . Appl Biochem Biotechnol 134, 193–206 (2006). https://doi.org/10.1385/ABAB:134:3:193

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/ABAB:134:3:193

Index Entries

Navigation