Skip to main content
Log in

Physicochemical characteristics of commercial lactases relevant to their application in the alleviation of lactose intolerance

  • Original Research Articles
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Selected microbial lactases are used to treat lactose intolerance. A series of experiments were carried out in vitro in order to determine the likely relative suitability of four major commercial lactase products used in this regard. The lactases displayed between 55 and 61% of maximum activity at 37°C and significant acitvity between pH3.0 and 6.5. They retained between 0 and 65% of original activities after exposure to full simulated digestive tract conditions for 6 h. All four enzymes proved to be particularly acid sensitive and only two products were enteric coated.

The products demonstrated varying ability to hydrolyze lactose under simulated digestive tract conditions. The most effective product hydrolyzed 2.7 g lactose per capsule, suggesting that consumption of several capsules, as opposed to the usually recommended one or two, would be required to hydrolyze the entire 12 g lactose load characteristic of a dairy-based meal. All enzymes were substantially pure and displayed similar kinetic properties and molecular weights. None appeared ideally suited for use in the alleviation of lactose intolerance. The findings may in part explain the variability and often disappointing results previously reported for lactase-based clinical trials and will provide comparative baseline data against which candidate second-generation lactases may be assessed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Holsinger, V. (1988), in Fundamentals of dairy chemistry, (Wong, P., ed.), Van Nostrand Reihold Co., New York, pp. 279–341.

    Google Scholar 

  2. Johnson, J. (1981) Lactose Digestion, John Hopkins University Press, Baltimore.

    Google Scholar 

  3. Onwulata, C., Ramkishan Rao, D., and Vankineni, P. (1989), Am. J. Clin. Nutr. 49, 1233–1237.

    CAS  Google Scholar 

  4. Vesa, T., Marteau, P., and Korpela, R. (2000), J. Am. Coll. Nutr. 19, 165s-175s.

    CAS  Google Scholar 

  5. Gaska, J. (1990), Am. Drug 202, 36–43.

    Google Scholar 

  6. Dipalma, J. and Collins, M. (1989), Gastroenterol. 11, 290–293.

    CAS  Google Scholar 

  7. Gao, K., Mitsui, T., Fujiki, K., Ishiguro, H., and Kondo, T. (2002), Nagoya J. Med. Sci. 65, 21–28.

    CAS  Google Scholar 

  8. Lami, F., Callegari, C., Tatali, M., Graziano, L., Guidetti, C., Miglioli, M., and Barbara, L. (1988), Am. J. Gastroenterol. 83, 1145–1149.

    CAS  Google Scholar 

  9. Lin, M., Dipalma, J., Martini, M., Gross, C., Harlander, S., and Savaiano, D. (1993), Dig. Dis. Sci. 38, 2022–2027.

    Article  CAS  Google Scholar 

  10. Medow, M., Thek, K., Newman, L., Berezin, S., Glassman, M., and and Schwarz, S. (1990), Am. J. Dis. Child. 114, 1261–1264.

    Google Scholar 

  11. Olson, R. (1988), Nutr. Rev. 46, 150–152.

    Google Scholar 

  12. Ramirez, F., Lee, K., and Graham D (1994), Am. J. Gastroenterol 89, 566–570.

    CAS  Google Scholar 

  13. Sanders, S., Tolman, K. and Reitberg, D. (1992), Clin. Pharm. 11, 533–538.

    CAS  Google Scholar 

  14. O’Connell, S. (2006), in Directory of therapeutic enzymes (Walsh, G. and McGrath, M. eds.), Tailor and Francis, London, UK pp. 261–290.

    Google Scholar 

  15. Bailey, M. and Linko, M. (1990), J. Biotechnol. 16, 57–66.

    Article  CAS  Google Scholar 

  16. Van Griethuysen-Dilber, E., Flaschel, E., and Renken, A. (1988), Process Biochem. 23, 55–59.

    Google Scholar 

  17. Xenos, K., Kyroundis, S., Anagnostidis, A., and Papastathopoulos, P. (1998), Eur. J. Drug Metab. Pharmacokinet. 23, 350–355.

    Article  CAS  Google Scholar 

  18. Asp, N., Johansson, C., Hallmer, H., and Siljestrom, M. (1983), J. Agric. Food Chem. 31, 476–482.

    Article  CAS  Google Scholar 

  19. Inborr, J. and Gronlund, A. (1993), Agricultural Sci. Finland. 2, 125–131.

    CAS  Google Scholar 

  20. Marteau, Pm, Minekus, M. Havenaar, R., and Huisineld, J. (1997), J. Dairy Sci. 80, 1031–1037.

    Article  CAS  Google Scholar 

  21. Morgavi, D., Beauchemin, K., Nsereko, V., Rode, L., McAllister, T., Iwaasa, A., Wang, Y., et al. (2001). J. Anim. Sci. 79, 1621–1630.

    CAS  Google Scholar 

  22. Sanchez, E., Muguerza, B., and Delgado, M. (2002), Milchwissenschaft. 57, 391–394.

    CAS  Google Scholar 

  23. Rasouli, I. and Kulkarni, Pm (1994), J. Appl. Bacteriol 77, 359–361.

    CAS  Google Scholar 

  24. Nagy, Z., Kiss, T., Szentirmai, A., and Biro, S. (2001), Protein Expr. Purif. 21, 24–29.

    Article  CAS  Google Scholar 

  25. Shaikh, S., Khire, J., and Khan, M. (1999), Biochim. Biophys. Acta. 1472, 314–322.

    CAS  Google Scholar 

  26. Galia, E., Nicolaides, E., Horter, D., Loberberg, R., and Reppas, C. (1998) Pharm. Res. 15, 698–705.

    Article  CAS  Google Scholar 

  27. Ingels, F., Deferme, S., Dextexhe, E., Oth, M., Van den Mooter, G., and Augustijns, P. (2002), Int. J. Pharm. 232, 183–192.

    Article  CAS  Google Scholar 

  28. Anonymous (2000), United States Pharmacopeia. 25/NF 23, the United States pharmaceutical convention, Rockville, MD, p. 2235.

  29. Laemmli, U. (1970), Nature. 227, 680–685.

    Article  CAS  Google Scholar 

  30. Park, Y., De Santi, M., and Pastore, G. (1979), J. Food Sci. 44, 100–103.

    Article  CAS  Google Scholar 

  31. Tanaka, Y., Kagamiishi, A., Kiuchi, A., and Horiuchi, T. (1975) J. Biochem. (Tokyo) 77, 241–247

    CAS  Google Scholar 

  32. Fimmel, C., Etienne, A., Cilluffo, T., Ritter, C., Gasser, T., Rey, J., Caradonna-Moscatelli, P., et al. (1985) Gastroenterol. 88, 1842–1851.

    CAS  Google Scholar 

  33. Davenport, H. (1982), Physiology of the Digestive Tract. 5 ed., Year Book Medical Publishers, London, UK.

    Google Scholar 

  34. Bilia, A., Carelli, V., Di Colo, G., and Nannipieri, E. (1996) Int. J. Pharm. 130, 83–92.

    Article  CAS  Google Scholar 

  35. Turkiewicz, M., Kur, J., Bialkowska, A., Cieslinski, H., Kalinowska, H., and Bielecki, S. (2003) Biomol. Eng. 20, 317–324.

    Article  CAS  Google Scholar 

  36. Wong, D., Larrabee, S., Clifford, K., Tremblay, J., and Friend, D. (1997). J. Control Release. 47, 173–179.

    Article  CAS  Google Scholar 

  37. Widmer, F. and Leuba, J. (1979), Eur. J. Biochem. 100, 559–567.

    Article  CAS  Google Scholar 

  38. Diaz, M., Pedregosa, A., Lucas, J., Torralba, S., Monistrol, I., and Laborda, F. (1996) Microbiologia sem. 12, 585–592.

    CAS  Google Scholar 

  39. Manzanares, P., de Graff, L., and Visser, J. (1998) Enzyme Microb. Technol. 22, 383–390.

    Article  CAS  Google Scholar 

  40. Karasova-Lipovova, P., Strnad, H., Spiwok, V., Mala, S., Kralova, B., and Russell, N. (2003) Enzyme Microb. Technol. 33, 836–844.

    Article  CAS  Google Scholar 

  41. Novozymes and Solvay to collaborate on digestive enzymes. http://www. novozymes.com/cgi-bin/bvisapi.dll/press/press.jsp?id=30884 & lang=en. Date accessed: May 2, 2006.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Walsh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

O’Connell, S., Walsh, G. Physicochemical characteristics of commercial lactases relevant to their application in the alleviation of lactose intolerance. Appl Biochem Biotechnol 134, 179–191 (2006). https://doi.org/10.1385/ABAB:134:2:179

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/ABAB:134:2:179

Index Entries

Navigation