Skip to main content
Log in

Simulaaneous ethanol and cellobiose inhibition of cellulose hydrolysis studied with integrated equations assuming constant or variable substrate concentration

  • Original Research Articles
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The integrated forms of the Michaelis-Menten equation assuming variable substrate (depletion) or constant substrate concentration were used to study the effect of the simultaneous presence of two exoglucanase Cel7A inhibitors (cellobiose and ethanol) on the kinetics of cellulose hydrolysis. The kinetic parameters obtained, assuming constant substrate (K m =21 mM, K ic =0.035 mM; K icl =1.5×1015mM; kcat=12 h−1) or assuming variable substrate (K m =16 mM, K ic =0.037 mM; K icl =5.8×1014 mM; kcat=9 h−1), showed a good similarity between these two alternative methodologies and pointed out that bothethanol and cellobiose are competitive inhibitors. Nevertheless, ethanol is a very weak inhibitor, as shown by the large value estimated for the kinetic constant K icl . In addition, assuming different concentrations of initial accessible substrate present in the reaction, both inhibition and velocity constants are at the same order of magnitude, which is consistent with the obtained values. The possibility of using this kind of methodology to determine kinetic constants in general kinetic studies is discussed, and several integrated equations of different Michaelis-Menten kinetic models are presented. Also examined is the possibility of determining inhibition constants without knowledge of the true accessible substrate concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A :

ethanol

E :

free enzyme

f 0.95 :

point of Fpa, pb (F distribution) curve with area 0.95 (to its right)

I :

all inhibitors

k cat :

catalytic constant (h−1)

k ic :

competitive inhibition constant (mM) to cellobiose

K icl :

competitive inhibition constant (mM) to ethanol

K iu :

uncompetitive inhibition constant (mM) to cellobiose

K iul :

uncompetitive inhibition constant (mM) to ethanol

K m :

Michaelis constant (mM)

n :

experimental points

P :

reaction product (cellobiose)

p A , p B :

parameters

P 0 :

initial product

Pt :

product at time t (min)

S :

substrate

t :

time (min)

V max :

maximum velocity

ω:

quotient used to test significance of improvement of different models interconvertible by addition or elimination of parameters by comparison of F-value

References

  1. Holtzaple, M. T., Caram, H. S., and Humphrey, A. E. (1984), Biotechnol. Bioeng. 26, 753–757.

    Article  Google Scholar 

  2. Pereira, A. N. (1987), PhD thesis, Purdue University, West Lafayette, IN.

  3. Golovchenko, N. P., Kataeva, I. A., and Akimenko, V. K. (1992), Enzyme Microb. Technol. 14, 327–331.

    Article  CAS  Google Scholar 

  4. Ramos, L. P., Breuil, C., and Saddler, J. N. (1993), Enzyme Microb. Technol. 15, 19–25.

    Article  CAS  Google Scholar 

  5. Walker, L. P., Belair, C. D., Wilson, D. B., and Irwin, C. D. (1993), Biotechnol. Bioeng. 42, 1019–1028.

    Article  CAS  Google Scholar 

  6. Gusakov, A. V. and Sinitsyn, A. P. (1992), Biotechnol. Bioeng. 40, 663–671.

    Article  CAS  Google Scholar 

  7. Bezerra, R. M. F. and Dias, A. A. (2005), Appl. Biochem. Biotechnol. 126, 49–59.

    Article  CAS  Google Scholar 

  8. Wu, Z. and Lee, Y. Y. (1997), Biotechnol. Lett. 19, 977–979.

    Article  CAS  Google Scholar 

  9. Holtzaple, M., Cognata, M., Shu, Y., and Hendrickson, C. (1990), Biotechnol. Bioeng. 36, 275–287.

    Article  Google Scholar 

  10. Ooshima, H., Ishitani, Y., and Harano, Y. (1985), Biotechnol. Bioeng. 27, 389–397.

    Article  CAS  Google Scholar 

  11. Kennedy, J. F. and Cabral, J. M. S. (1987) (Enzyme Immobilization) in Biotechnology, Rehm, H. J. and Reed, G., eds., vol. 7a, Enzyme Technology, Kennedy, J. F., ed., VCH Verlagsgesellschaft, Weinheim, pp. 347–404.

    Google Scholar 

  12. Caldini, C., Bonomi, F., Pifferi, P. G., Lanzarini, G., and Galante, Y. M. (1994), Enzyme Microb. Technol. 16, 286–291.

    Article  CAS  Google Scholar 

  13. Hsu, T.-A. and Tsao, G. T. (1979), Biotechnol. Bioeng. 21, 2235–2246.

    Article  CAS  Google Scholar 

  14. Orsi, B. A. and Tipton, K. F. (1979), Methods Enzymol. 63, 159–183.

    Article  CAS  Google Scholar 

  15. Duggleby, R. G. (2001), Methods 24(2), 168–174.

    Article  CAS  Google Scholar 

  16. Markus, M., Hess, B., Ottaway, J. H., and Cornish-Bowden, A. (1976), FEBS Lett. 63(2), 225–230.

    Article  CAS  Google Scholar 

  17. Foster, R. J. and Niemann, C. (1955), J. Am. Chem. Soc. 77, 1886–1892.

    Article  CAS  Google Scholar 

  18. Philo, R. D. and Selwyn, M. J. (1973), Biochem. J. 135, 525–530.

    Article  CAS  Google Scholar 

  19. Liao, F., Tian, K.-C., Yang, X., Zhou, Q.-X., Zeng, Z.-C., and Zuo, Y.-P. (2003), Anal. Bioanal. Chem. 375, 756–762.

    Article  CAS  Google Scholar 

  20. Fernly, H. N. (1974), Eur. Biochem. J. 43, 377, 378.

    Article  Google Scholar 

  21. Yun, S.-L. and Suelter, C. H. (1977), Biochim. Biophys. Acta 480, 1–13.

    Article  CAS  Google Scholar 

  22. Bezerra, R. M. F. and Dias, A. A. (2004), Appl. Biochem. Biotechnol. 112, 173–184.

    Article  CAS  Google Scholar 

  23. Beldman, G., Leeuwen, S.-V., Rombouts, F. M., and Voragen, F. G. J. (1985), Biochem. J. 146, 301–308.

    CAS  Google Scholar 

  24. Bezerra, R. M. F. (1999), Roum. Biotechnol. Lett. 4(4), 335–345.

    CAS  Google Scholar 

  25. Bezerra, R. M. (1995), PhD thesis, Universidade de Trás-os-Montes e Alto Douro, Vila Real, Portugal.

  26. Bezerra, R. M. F. (1999), J. Med. Biochem. 3, 9–16.

    CAS  Google Scholar 

  27. Hsu, T.-H. (1979), PhD thesis, Purdue University, West Lafayete, IN.

  28. Howell, J. A. and Stuck, J. D. (1975), Biotechnol. Bioeng. 17, 873–893.

    Article  CAS  Google Scholar 

  29. Mannervick, B. (1982), Methods Enzymol. 87C, 370–391.

    Article  Google Scholar 

  30. Kleman-Leyer, K. M. and Kirk, T. K. (1994), Appl. Environ. Microbiol. 60(8), 2839–2845.

    CAS  Google Scholar 

  31. Segel, I. H. (1975), Enzyme Kinetics, Behavior and Analysis of Rapid Equilibrium and Steady-State Enzyme Systems, John Wiley & Sons, New York.

    Google Scholar 

  32. Bezerra, R. M. and Pereira, A. N. (1989), Ciência Biológica, Mol. Cell. Biol. (Portugal) 14(3/4), 71–79.

    Google Scholar 

  33. Kadam, K. L., Rydholm, E. C., and McMillan, J. D. (2004), Biotechnol. Prog. 20(3), 698–705.

    Article  CAS  Google Scholar 

  34. Langmuir, I. (1916), J. Am. Chem. Soc. 38, 2221–2295.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui M. F. Bezerra.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bezerra, R.M.F., Dias, A.A., Fraga, I. et al. Simulaaneous ethanol and cellobiose inhibition of cellulose hydrolysis studied with integrated equations assuming constant or variable substrate concentration. Appl Biochem Biotechnol 134, 27–38 (2006). https://doi.org/10.1385/ABAB:134:1:27

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1385/ABAB:134:1:27

Index Entries

Navigation