Skip to main content
Log in

Inulin-containing biomass for ethanol production

Carbohydrate extraction and ethanol fermentation

  • Session 6 Bioprocess Research and Development
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The use of stalks instead of tubers as a source of carbohydrates for ethanol production has been investigated. The inulin present in the stalks of Jerusalem artichoke was extracted with water and the effect of solid-liquid ratio, temperature, and acid addition was studied and optimized in order to attain a high-fructose fermentable extract. The maximum extraction efficiency (corresponding to 35 g/L) of soluble sugars was obtained at 1/6 solidliquid ratio.

Fermentations of hydrolyzed extracts by baker's yeast and direct fermentation by an inulinease activity yeast were also performed and the potential to use this feedstock for bioethanol production assessed. The results show that the carbohydrates derived from Jerusalem artichoke stalks can be converted efficiently to ethanol by acidic hydrolysis followed by fermentation with Saccharomyces cerevisiae or by direct fermentation of inulin using Kluyveromyces marxianus strains. In this last case about 30 h to complete fermentation was required in comparison with 8–9 h obtained in experiments with S. cerevisiae growth on acid extracted juices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gosse, G. (1988), In: Topinambour (Jerusalem artichoke), EUR 11855, G. Grassi and G. Gosse, eds., Commission of the European Communities, pp. 3–14.

  2. Kosarik, N., Consentino, G. P., and Wieczorek, A. (1984), Biomass 5, 1–36.

    Article  Google Scholar 

  3. Incoll, L. D. and Neales, T. F. (1970), J. Exp. Bot. 21(67), 469–476.

    Article  Google Scholar 

  4. Ballesteros, M. (1989), PhD thesis, UAM University of Madrid, Spain.

  5. Chubey, B. B. and Dorrel, D. G. (1974), Can. Inst. Food Sci Tech. 7, 98–100.

    CAS  Google Scholar 

  6. Kriestan, M. P. J. (1978), Biotech. Bioeng. 3, 447–4503.

    Article  Google Scholar 

  7. Margaritis, A., Bajpai, P., and Cannell, E. (1981), Biotech. Lett. 3, 595–599.

    Article  CAS  Google Scholar 

  8. Szambelan, K., Nowak, J., and Chrapkowska, K. J. (2004), Acta Sci. Pol. Technol. Aliment. 3(1), 45–53.

    CAS  Google Scholar 

  9. Guiraud, J. P., Daurelles, J., and Galzy, P. (1981), Biotech. Bioeng. 23, 1401–1420.

    Article  Google Scholar 

  10. Margaritis, A. and Bajpai, P. (1981), Biotech. Lett. 3, 679–685.

    Article  CAS  Google Scholar 

  11. Poncet, S., Jacob, F. H., Berton, M. C., and Couble, A. (1985), Ann. Inst. Pasteur. Microbiol. 136B(1), 99–109.

    Article  PubMed  CAS  Google Scholar 

  12. Prosky, L. and Hoebregs, H. (1999), J. Nutr. 129, 1418S-1423S.

    PubMed  CAS  Google Scholar 

  13. National Renewable Energy Laboratory (NREL). Chemical Analysis and Testing Laboratory Analytical Procedures: LAP-001 to LAP-005, LAP-010 and LAP-017. NREL, Golden, CO. www. ott.doe.gov/biofuels/analytical methods.html.

  14. Hoebregs, H. (1997), J. AOAC Int. 80, 1029–1037.

    CAS  Google Scholar 

  15. Byun, S. M. and Nahm, B. H. (1948), J. Food Sci. 43, 1871–1879.

    Article  Google Scholar 

  16. Margaritis, A., Bajpai, P., and Bajpai, P. K. (1983), Develop. Ind. Microbiol. 24, 321–327.

    CAS  Google Scholar 

  17. Berthels, N. J., Cordero Otero, R. R., Bauer, F. F., Thevelein, J. M., and Pretorius, I. (2004), FEMS Yeast Res. 4, 683–689.

    Article  PubMed  CAS  Google Scholar 

  18. Wang, D., Xu, Y., Hu, J., and Zhao, G. (2004), J. Inst. Brew. 110(4), 340–346.

    CAS  Google Scholar 

  19. Bajpai, P. and Margaritis, A. (1982), App. Environ. Microbiol. 44(6), 1325–1329.

    CAS  Google Scholar 

  20. Caserta, G. and Cervigni, T. (1991), Biores. Technol. 35, 247–250.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mercedes Ballesteros.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Negro, M.J., Ballesteros, I., Manzanares, P. et al. Inulin-containing biomass for ethanol production. Appl Biochem Biotechnol 132, 922–932 (2006). https://doi.org/10.1385/ABAB:132:1:922

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/ABAB:132:1:922

Index Entries

Navigation