Skip to main content
Log in

Affinity foam fractionation of Trichoderma cellulase

  • Session 6 Bioprocess Research and Development
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Cellulase could not be selectively collected from fermentation broth by simple foam fractionation, because of the presence of other more surface-active compounds. A new approach of affinity foam fractionation was investigated for improvement. A hardwood hydrolysate (containing cellulose oligomers, substrates to cellulase) and two substrate analogs, i.e., carboxymethyl cellulose (CMC) and xylan hydrolysate, were added before the foaming process. The substrates and substrate analogs were indeed found to bind the cellulase selectively and form more hydrophobic complexes that partition more readily onto bubble surfaces. In this study, the effects of the type and concentration of substrate/analog as well as the presence of cells at different growth stages were examined. The foam fractionation properties evaluated included foaming speed, foam stability, foamate volume, and enrichment of filter paper unit (FPU) and individual cellulase components (i.e., endoglucanases, exoglucanases, and β-glucosidases). Depending on the broth and substrate/analog employed, the foamate FPU could be more than fourfold higher than the starting broth FPU. Addition of substrate/analog also deterred the enrichment of other extracellular proteins, resulting in the desired cellulase purification in the foamate. The value of E/P (enzyme activity-FPU/g/L of proteins) in the foamate reached as high as 18, from a lactose-based fermentation broth with original E/P of 5.6. Among cellulase components, exoglucanases were enriched the most and β-glucosidases the least. The study with CMC of different molecular weights (MW) and degrees of substitution (DS) indicated that the CMC with low DS and high MW performed better in cellulase foam fractionation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Montero, G. A., Kirschner, T. F., and Tanner, R. D. (1993), Appl. Biochem. Biotechnol. 39/40, 467–475.

    Article  Google Scholar 

  2. Varley, J. and Ball, S. K. In: Separations for Biotechnology 3, D. L. Pyle, ed., The Royal Society of Chemistry, London, pp. 525–530.

  3. Wenzig, E., Lingg, S., Kerzel, P., Zeh, G., and Mersmann, A. (1993), Chem. Eng. Technol. 16, 405–412.

    Article  CAS  Google Scholar 

  4. Batt, C. A. (1991), In: Biomass. In Biotechnology: The Science and the Business, Moses, V., Cape, R. E., eds., Harwood Academic, New York, pp. 521–536.

    Google Scholar 

  5. Bailey, M. J., Askolin, S., Horhammer, N., et al. (2002), Appl. Microbial. Biotechnol. 58(6), 721–727.

    Article  CAS  Google Scholar 

  6. Zhang, Q., Lo, C. C., and Ju, L. K. (2005), Bioresour. Technol., submitted.

  7. Dubreil, L., Compoint, J. P., and Marion, D. (1997), J. Agric. Food Chem. 45, 108–118.

    Article  CAS  Google Scholar 

  8. Maa, Y. F. and Hsu, C. C. (1997), Biotechnol. Bioeng. 54(6), 503–512.

    Article  CAS  Google Scholar 

  9. Bravo Rodríguez, V., Páez Dueñas, P. M., Reyes Requena, A., Aoulad El-Hadj, M., and García López, A. I. (2001), Can. J. Chem. Eng. 79, 289–295.

    Article  Google Scholar 

  10. Sreenath, H. K. (1993), Lebensm-Wisst u-Technol. 26(3), 224–228.

    Article  CAS  Google Scholar 

  11. Bravo, V., Páez, M. P., Aould El-Hadj, M., Reyes, A., and García, A. I. (2001), J. Chem. Technol. Biotechnol. 77, 15–20.

    Article  CAS  Google Scholar 

  12. Biely, P., Vrsanska, M., and Claeyssens, M. (1991), Eur. J. Biochem. 200, 157–163.

    Article  PubMed  CAS  Google Scholar 

  13. Vladimir, M. C., Olga, V. E., and Anatole, A. K. (1988), Enzyme Microb. Technol. 10, 503–507.

    Article  Google Scholar 

  14. Biely, P. and Markovic, O. (1988), Biotechn. Appl. Biochem. 10(2), 99–106.

    CAS  Google Scholar 

  15. Mandels, M., Andreotti, R., and Roche, C. (1976), Biotechnol. Bioeng. Symp. 6, 21–33.

    PubMed  CAS  Google Scholar 

  16. Lee, P. and Moore, M. Abstracts of papers, (2002), 223rd ACS National Meeting, Orlando, FL, United States.

  17. Lo, C.-M., Zhang, Q., and Ju, L. K. (2005), submitted to 27th Symposium on Biotechnology for Fuels and Chemicals.

  18. Miller, W. M., Blanch, H. W., and Wilke, C. R. (1988), Biotechnol. Bioeng. 32, 947–965.

    Article  CAS  Google Scholar 

  19. Ohnishi, S. T. and Barr, J. K. (1978), Anal. Biochem. 86, 193–207.

    Article  PubMed  CAS  Google Scholar 

  20. Gunjikar, T. P., Sawant, S. B., and Joshi, J. B. (2001), Biotechnol. Prog. 17, 1166–1168.

    Article  PubMed  CAS  Google Scholar 

  21. Berghem, L. E. R. and Petterson, L. G. (1973), Eur. J. Biochem. 37, 21–30.

    Article  PubMed  CAS  Google Scholar 

  22. Afolabi, O. A. (1997), M.S. Thesis, The University of Akron, Akron, OH.

  23. Klesov, A. A., Rabinoyich, M. L., Sinitsyn, A. P., Churulova, I. V., and Grigorash, S. Y. (1981), Soy. J. Bioorg. Chem. 6, 662–667.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lu-Kwang Ju.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Q., Lo, CM. & Ju, LK. Affinity foam fractionation of Trichoderma cellulase. Appl Biochem Biotechnol 132, 1051–1065 (2006). https://doi.org/10.1385/ABAB:132:1:1051

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/ABAB:132:1:1051

Index Entries

Navigation